

CaCO₃(s) + CO₂(g) + H₂O (l) (limestone) (water falls) Ca²⁺(aq) + 2HCO₃ (aq)

2

Classifying Solutions of Electrolytes

Electrolytes—solutes form ions when dissolved in water (or certain other solvents, e.g. acetonitrile)
 Strong (weak, non-) electrolytes

 $\begin{aligned} HNO_3 + H_2O &\rightarrow NO_3^- + H_3O^+ \text{ (completely ionized)} \\ CH_3COOH + H_2O &\rightleftharpoons CH_3COO^- + H_3O^+ \text{ (partially ionized)} \\ sugar (s) + water = sugar aquesous soln (completely non-ionized) \end{aligned}$

TABLE 9-1			
Classification of Electrolytes			
Strong	Weak HF		
 Inorganic acids such as HNO₃, HClO₄, H₂SO⁴₄, HCl, HI, HBr, HClO₃, HBrO₃ Alkali and alkaline-earth hydroxides Most salts 	 Many inorganic acids, including H₂CO₃, H₃BO₃, H₃PO₄, H₂S, H₂SO₃ Most organic acids Ammonia and most organic bases Halides, cyanides, and thiocyanates of Hg, Zn, and Cd 		

 $Ca(OH)_2 \rightarrow Ca^{2+} + 2OH^-$, no $Ca(OH)^-$ in solution HF is a weak electrolyte due to hydrogen bond.

4

Acids and Bases

- An acid donates protons, a base accepts protons
 - An acid donates protons only in the presence of a proton acceptor (a base). A base accepts protons only in the presence of a proton donor (an acid)

5

Bronsted-Lowry Acids and Bases

These two chemists pointed out that acids and bases can be seen as proton transfer reactions.

According to the Bronsted-Lowry concept:

- An acid donates a proton and the base accepts it.
- Newly formed species are called conjugate base and conjugate acid, respectively.

$$HCl + NH_{3} \rightleftharpoons Cl^{-} + NH_{4}^{+}$$
$$Acid_{1} + base_{2} \rightleftharpoons base_{1} + acid_{2}$$

A conjugate base is formed when an acid loses a proton (HCl \rightarrow Cl \cdot); A conjugate acid is formed when a base accepts a proton (NH₃ \rightarrow NH4^{*})

7

Consider the reaction of NH_3 with H_2O :

 $\begin{array}{ll} \mathsf{NH}_3\left(\mathsf{aq}\right) + \ \mathsf{H}_2\mathsf{O}\left(\mathsf{aq}\right) \xrightarrow{} \mathsf{NH}_4^+\left(\mathsf{aq}\right) + \mathsf{OH}^-\left(\mathsf{aq}\right) \\ (\mathsf{base1}) & (\mathsf{acid2}) & (\mathsf{acid1}) & (\mathsf{base2}) \end{array}$

Note:

 $NH_3 \& NH_4^+$ are a conjugate acid-base pair. $H_2O \& OH_1^-$ also a conjugate acid-base pair

8

Example

Identify the acid and base species in the following equations:

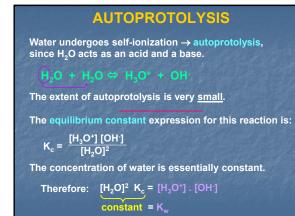
 CO_3^2 -(aq) + H₂O(I) \implies HCO₃-(aq) + OH-

 $CH_{3}COOH + H_{2}O \rightleftharpoons CH_{3}COO^{-} + H_{3}O^{+}$ (Acetic acid) (base) (hydronium)

Amphiprotic species ("amphi-": both):
a species that can act as either an acid or a
base, depending on the other reactant.
Consider water:
$$(H_2O + CH_3O \Leftrightarrow OH + CH_3OH)$$

acid base
 $H_2O + (HBr \Leftrightarrow H_3O^* + Br)$
base acid

 $\begin{array}{l} H_2 PO_4^- + H_2 O \rightleftharpoons H_3 PO_4 + OH^-\\ base1 & acid2 & acid1 & base2\\ (amphiprotic)\\ H_2 PO_4^- + H_2 O \rightleftharpoons HPO_4^{-2-} + H_3 O^+\\ acid1 & base2 & base1 & acid2\\ \end{array}$ $\begin{array}{l} NH_2 CH_2 COOH \rightleftharpoons NH_3^+ CH_2 COO^-\\ glycine & zwitterion\\ ``sweeterian''\\ A zwitterion is an ion that bears both a positive and a negative charge \\ \end{array}$


11

AUTOPROTOLYSIS

In autoprotolysis a <u>proton</u> is transferred between two identical <u>molecules</u>, one of which acts as a <u>Brønsted</u> <u>acid</u>, releasing a proton which is accepted by the other molecule acting as a <u>Brønsted base</u>.

$$\begin{split} H_2O + H_2O &\rightleftharpoons H_3O^+ + OH^- \\ CH_3OH + CH_3OH &\rightleftharpoons CH_3OH_2^+ + CH_3O^- \\ HCOOH + HCOOH &\rightleftharpoons HCOOH_2^+ + HCOO^- \\ NH_3 + NH_3 &\rightleftharpoons NH_4^+ + NH_2^- \end{split}$$

base1 + acid2 ⇔ acid1 + base2

Variation of <i>K</i> _w Temperature	with
Temperature, °C	$K_{ m w}$
0	0.114×10^{-14}
25	1.01×10^{-14}
50	5.47×10^{-14}
75	19.9×10^{-14}
100	49 $\times 10^{-14}$

Example: Calculate the hydronium and hydroxide ion concentration of pure water at 25 $^\circ$ C and 100 $^\circ$ C.

14

We call the equilibrium value of the ion product $[H_3O^+][OH_-]$ the ion-product constant of water.

K_w = [H₃O⁺] [OH⁻] = 1.0 x 10⁻¹⁴ at 25°C

Using K_w you can calculate concentrations of H_3O^+ and OH^- in pure water. [H_0^1] [OH] = 1.0 x 10⁻¹⁴

But $[H_3O^+] = [OH^-]$ in pure water $\therefore [H_3O^+] = [OH^-] = 1.0 \times 10^{-7} \text{ M}$

If you add an acid or a base to water the concentrations of H_3O^+ and OH^\cdot will no longer be equal. But K_w will still hold.

Acid / Base Strengths

- The strength of an acid or base is determined by the extent it dissociates in water to form H⁺ or OH⁻ respectively
- Strong acids:

HA \rightarrow H⁺ + A⁻ (100% dissociation)

 $[\mathrm{H}^+] = [\mathrm{HA}]_{\mathrm{initial}}$

Strong bases:

 $MOH \rightarrow M^+ + OH^- (100\% \text{ dissociation})$ $[OH^-] = [MOH]_{initial}$

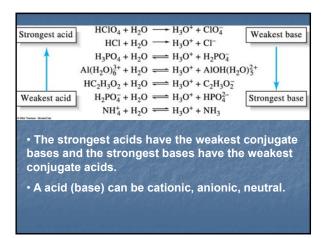
16

Weak Acid

 $\hfill Weak acids only partially dissociate to give H^+ in H_2O$

• Equilibrium Constant HA + H₂O \Leftrightarrow H₃O⁺ + A⁻

$$\begin{split} K_{a} &= [H^{+}][A^{-}] / [HA] \\ K_{a} - \text{acid dissociation constant} \end{split}$$


• The smaller the K_a value, the weaker the acid

17

Weak Base

 Weak bases react with water by abstracting a proton

- $$\begin{split} \textbf{K}_{b} &= \textbf{[BH^+][OH^-] / [B]} \\ \textbf{K}_{b} \text{base hydrolysis constant} \\ \text{Hydrolysis reaction with water} \end{split}$$
- The smaller the K_b value, the weaker the base

Differentiating/Leveling Solvents

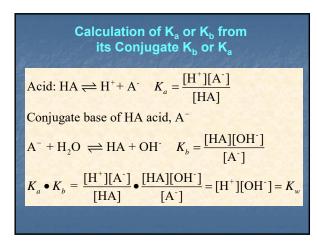
- In water, perchloric and hydrochloric acids are strong acids and have the same strength.
- In acetic acid, perchloric acid is considerably stronger than HCl; its dissociation being ~5000 times greater.
- Acetic acid acts as *differentiating solvent* toward the two acids by revealing the inherent differences in their activities, and water is called **leveling solvent** for perchloric, hydrochloric (and nitric) acids because all three are 100% ionized in water and show no difference in strength.

Equilibrium Constant

$$aA + bB + ... \rightleftharpoons cC + dD + ...$$

 $K = \frac{[C]^c [D]^d ...}{[A]^a [B]^b ...}$

Standard State


- 1. Solution concentration ([X]) unit: M (mol/L).
- 2. Gas concentrations (partial pressure): atm.
- 3. The concentrations of pure solids, pure liquids, and solvents are omitted because they are (constant) unity.

4. K = f(T).

5. Only thermodynamic (tendency) rather than kinetic (reaction rate) conditions are considered.

22

Equilibria and Equilibrium	Constants Important in An	alytical Chemistry	
Type of Equilibrium	Name and Symbol of Equilibrium-Constant	Typical Example	Equilibrium-Constant Expression
Dissociation of water Heterogeneous equilibrium between a slightly soluble substance and its ions in a saturated solution	Ion-product constant, K_w Solubility product, K_{qp}	$2H_2O \rightleftharpoons H_3O^+ + OH^+ BaSO_4(z) \rightleftharpoons Ba^{2+} + SO_4^{2-}$	$\begin{split} K_{\varphi} &= \begin{bmatrix} H_{3}O^{*} \end{bmatrix} \begin{bmatrix} OH^{*} \end{bmatrix} \\ K_{\varphi} &= \begin{bmatrix} Ba^{2*} \end{bmatrix} \begin{bmatrix} SOa^{2*} \end{bmatrix} \end{split}$
Dissociation of a weak acid or base	Dissociation constant, $K_{\rm s}$ or $K_{\rm b}$	$\begin{array}{l} CH_3COOH + H_3O \rightleftharpoons \\ H_3O^* + CH_3COO^- \\ CH_3COO^- + H_2O \rightleftharpoons \\ OH^- + CH_3COOH \end{array}$	$K_{\rm s} = \frac{[\rm H_{\rm s}O^*][\rm CH_{\rm s}COO^*]}{[\rm CH_{\rm s}COOH]}$ $K_{\rm b} = \frac{[\rm OH^*][\rm CH_{\rm s}COOH]}{[\rm CH_{\rm s}COO^*]}$
Formation of a complex ion	Formation constant, β_e	$Ni^{2+} + 4CN^- \rightleftharpoons Ni(CN)_4^{2-}$	$\beta_4 = \frac{[\text{Ni}(\text{CN})_6^{2^-}]}{[\text{Ni}^{2^+}][\text{CN}^-]^4}$
Oxidation/reduction equilibrium	K_{nim}	$\begin{array}{l} MnO_{4}{}^{+}+5Fe^{2+}+8H^{+}==\\ Mn^{2+}+5Fe^{3+}+4H_{2}O \end{array}$	$K_{\text{makes}} = \frac{[\text{Mn}^{2+}][\text{Fe}^{3+}]^5}{[\text{MnO}_4^-][\text{Fe}^{2+}]^5[\text{H}^+]}$
Distribution equilibrium for a solute between immiscible solvents	K _d	$1_2(aq) \Longrightarrow 1_2(arg)$	$K_d = \frac{[I_2]_{eq}}{[I_2]_{eq}}$


Examples of
$$K_{sp}$$
 Expression
 $AgCl(s) \rightleftharpoons Ag^+ + Cl^ K_{sp} = [Ag^+][Cl^-]$
 $CaF_2(s) \rightleftharpoons Ca^{2+} + 2F^ K_{sp} = [Ca^{2+}][F^-]^2$
 $BaSO_4(s) \rightleftharpoons Ba^{2+} + SO_4^{2-}$ $K_{sp} = [Ba^{2+}][SO_4^{2-}]$
 $CaCO_3(s) \rightleftharpoons Ca^{2+} + CO_3^{2-}$ $K_{sp} = [Ca^{2+}][CO_3^{2-}]$
 $PbI_2(s) \rightleftharpoons Pb^{2+} + 2I^ K_{sp} = ?$

_			

Solubility Product Constant

$$(K_{sp})$$

In General: (For sparingly soluble compounds)
 $A_x B_y (s) \Leftrightarrow xA^{+y} + yB^{-x}$
 $K = \frac{[A^{+y}]^x [B^{-x}]^y}{[A_x B_y]}$
 $[A_x B_y] K = K_{sp} = [A^{+y}]^x [B^{-x}]^y$
 $\{[A_x B_y] (solid) \text{ is constant}\}$

Manipulating Equilibrium Constants
(1)
$$A + B \rightleftharpoons C + D$$
 K_1
(2) $E + F \rightleftharpoons G + H$ K_2
(3) = (1) + (2) $K_3 = K_1 \times K_2$
(3) $A + B + E + F \rightleftharpoons C + D + G + H$ $K_3 = ?$
(4) = (1) - (2) $K_4 = K_1 / K_2$
(4) $A + B + G + H \rightleftharpoons C + D + E + F$ $K_4 = ?$
[Class practice]

Calculating
$$K_{sp}$$
 from the Solubility
If the solubility of AgCl is 1.9×10^{-3} g/L, what
would be the K_{sp} ?
 $AgCl(s) \rightleftharpoons Ag^+ + Cl^-, K_{sp} = [Ag^+][Cl^-]$
(s) s s
 $K_{sp} = [Ag^+][Cl^-] = s^2 = (1.3 \times 10^{-5})^2 = 1.7 \times 10^{-10}$
[$s = 1.9 \times 10^{-3} g / L = ?M$
 $= \frac{1.9 \times 10^{-3} g / L}{F.W.AgCl} = \frac{1.9 \times 10^{-3} g / L}{143.4 g / mol} = 1.3 \times 10^{-5} M$]

□ The solubility of lead(II) arsenate, Pb ₃ (AsO ₄) ₂ , is 3.0x10 ⁻⁵ g/L, calculate its K _{sp.}
$Pb_3(AsO_4)_2(s) \rightleftharpoons 3Pb^{2+} + 2AsO_4^{3-} K_{sp} = [Pb^{2+}]^3[AsO_4^{3-}]^2$
(s) $3s$ $2s$
$K_{\rm sp} = [Pb^{2+}]^3 [AsO_4^{3-}]^2 = (3s)^3 (2s)^2 = 108s^5 = 4.2 \times 10^{-36}$
$[s = 3.0 \times 10^{-5} g / L \rightarrow ?M$
$=\frac{3.0\times10^{-5}g/L}{F.W.Pb_3(AsO_4)_2}=\frac{3.0\times10^{-5}g/L}{899.44g/mol}=3.3\times10^{-8}M]$

Calculating Solubility from
$$K_{sp}$$

$$AgI(s) \rightleftharpoons Ag^{+} + I^{-}$$

$$(s) \qquad s \qquad s$$

$$K_{sp} = [Ag^{+}][I^{-}] = s \cdot s = s^{2}$$

$$s = \sqrt{K_{sp}}$$

$$PbI_{2}(s) \rightleftharpoons Pb^{2+} + 2I^{-}$$

$$(s) \qquad s \qquad 2s$$

$$K_{sp} = [Pb^{2+}][I^{-}]^{2} = s \cdot (2s)^{2} = 4s^{3}$$

$$s = \sqrt[3]{\frac{K_{sp}}{4}} = (\frac{K_{sp}}{4})^{1/3}$$

$$= 2.0 \times 10^{-4} \text{ g} = 0.20 \text{ mg}$$

$$= (C \cdot V) \times formula weight (C = s)$$

= $[1.35 \times 10^{-5} (M) \cdot 100.00 \times 10^{-3} (L)] \times 143.32(g / mol)$

$$= (C \cdot V) \times formula weight (C = s)$$

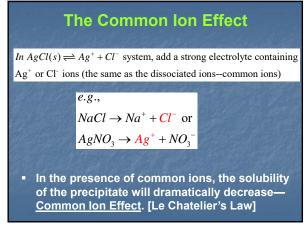
$$= (C \cdot V) \times formula weight (C = s)$$

be dissolved in 100.00 mL of water at 25 °C [from previous calculation:
$$s = 1.35 \times 10^{-5}$$
 M]

How many grams of AgCl (fw =
$$143.32$$
) car

Solubility of a Precipitate
in Pure Water
How many grams of AgCl (fw = 143.32
can be dissolved in 100.00 mL of water a
25 °C? (
$$K_{sp [AgCl]} = 1.82 \times 10^{-10}$$
)
$$AgCl(s) \rightleftharpoons Ag^{+} + Cl^{-}$$
(s) s s
 $K_{sp} = [Ag^{+}][Cl^{-}] = s \cdot s = s^{2}$
 $s = (K_{sp})^{1/2} = (1.82 \times 10^{-10})^{1/2}$
 $= \sqrt{1.82} \times 10^{-5} = 1.35 \times 10^{-5} M$

A general expression for a precipitate dissociation


$$A_{x}B_{y}(s) \rightleftharpoons xA + yB$$

$$(s) \qquad x \cdot s \qquad y \cdot s$$

$$K_{sp} = [A]^{x}[B]^{y} = [x \cdot s]^{x}[y \cdot s]^{y} = x^{x} \cdot y^{y} \cdot s^{(x+y)}$$

$$s^{(x+y)} = \frac{K_{sp}}{x^{x} \cdot y^{y}}; \qquad s = (\frac{K_{sp}}{x^{x} \cdot y^{y}})^{\frac{1}{x+y}}$$

Calculate the solubility of slightly soluble barium fluoride, BaF₂, in (a) pure water, and (b) 0.15 M NaF. (K_{sp} = 1.0x10⁻⁶)

(a) In pure water

 $BaF_2(s) \rightleftharpoons Ba^{2+} + 2F^{-}$ *(s)* s 2s $K_{sp} = [Ba^{2+}][F^{-}]^2 = s(2s)^2 = 4s^3$ $s = (\frac{K_{sp}}{4})^{1/3} = (\frac{1.0 \times 10^{-6}}{4})^{1/3}$ $= 6.3 \times 10^{-3} M$

(b) In 0.15 M NaF

$$BaF_2(s) \rightleftharpoons Ba^{2+} + 2F^-; NaF \to Na^+ + F^-(0.15M)$$

(s) $s \ 2s + [F^-]_{remaining} \approx [F^-]_{remaining} = 0.15M$
 $K_{sp} = [Ba^{2+}][F^-]^2 = s(0.15)^2 = 0.0225s$
 $s = \frac{K_{sp}}{0.0225} = \frac{1.0 \times 10^{-6}}{0.0225} = 4.4 \times 10^{-5}M$
Check the assumption:
 $2s + [F^-] = 8.8 \times 10^{-5} + 0.15 = 0.15 \text{ M}$
Assumption was valid.
BaF_2 solubility in 0.15 M NaF is ~1/140 times
that in pure water.

Class Practice: Calculate the molar solubility of Ag_2CO_3 in a solution that is 0.0200 M in Na_2CO_3 . ($K_{sp} = 8.1 \times 10^{-12}$)

(key: 1.0x10⁻⁵ M)

37

	of Ag ₂ C0 0.0100 M	O ₃ tha ∕I AgN	it result IO ₃ is n	s when 2	ar solubility 00. mL of 1 100. mL of 10 ⁻¹²
See al		T_{i}	he chemica	al reaction:	
	24	$AgNO_3 +$	$Na_2CO_3 \equiv$	$\Rightarrow Ag_2CO_3(s)$	$+2NaNO_3$
	moles	2	1 -	\rightarrow 1	2
	initial moles	0.0100×200. 1000	0.100×100. 1000	0	0
		0.002	0.01 (2:10 m	olar ratio, Na ₂ CO ₃ in o	excess)
	At eq. moles	0	$0.01 - \frac{1}{2} (0.002)$	$\frac{1}{2}(0.002)$	0.002
			0.009	0.001	0.002
	$[\mathrm{CO}_3^{2-}] = \frac{1}{\mathrm{sol}}$	# of n ution vo	noles lume in L	$=\frac{0.009}{0.200+0.1}$	$\overline{00} = 0.030 \text{ M}$

38

$$Ag_{2}CO_{3}(s) \rightleftharpoons 2Ag^{+} + CO_{3}^{2-} \qquad K_{sp} = [Ag^{+}]^{2}[CO_{3}^{2-}]$$
(s) $2s \quad s + [CO_{3}^{2-}]_{remaining} \approx [CO_{3}^{2-}]_{remaining}$

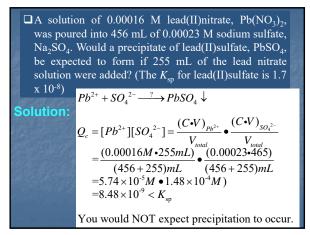
$$K_{sp} = [Ag^{+}]^{2}[CO_{3}^{2-}] = (2s)^{2} \cdot (0.030) = 8.1 \times 10^{-12}$$
 $s = (\frac{8.1 \times 10^{-12}}{0.030 \times 4})^{1/2} = 8.2 \times 10^{-6}M$

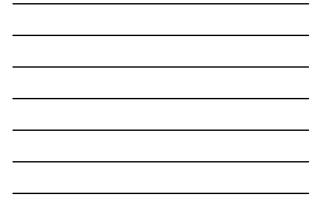
Check the assumption : $[CO_3^{2^-}] = s + [CO_3^{2^-}]_{remaining} = 8.2 \times 10^{-6} + 0.030 \approx 0.030M$ Assumption was valid !

Precipitation Calculations

$$xA + yB \xrightarrow{?} A_xB_y(s)$$

initial conc. $[A]_i \quad [B]_i \qquad 0$
As $A_xB_y(s) \rightleftharpoons xA + yB \qquad K_{sp}=[A]_{eq}^x[B]_{eq}^y$
Solubility quotient (Q_c) (or ion product)
 $Q_c = [A]_i^x[B]_i^y$
If $Q_c > K_{sp}$, precipitation occures (saturated solution)
If $Q_c = K_{sp}$, NO precipitation (unsaturated solution)
If $Q_c = K_{sp}$, the reaction mixture is at equilibrium


□ Suppose a solution has $[Ca^{2+}]$ and $[SO_4^{2-}]$ of 0.0052 M and 0.0041 M, respectively. If these concentrations were doubled by evaporating half the water in the solution, would precipitation of CaSO₄ occur given that the K_{sp} for calcium sulfate is 2.4 x 10⁻⁵?


Solution:

$$Ca^{2+} + SO_4^{2-} \xrightarrow{?} CaSO_4 \downarrow$$

$$Q_c = [Ca^{2+}][SO_4^{2-}] = (0.0052 \times 2)(0.0041 \times 2)$$

=8.83×10⁻⁵ >> K_{sp}

You would expect precipitation to occur.

	Completeness of Precipitation			
□ Lead chromate, PbCrO ₄ , is a yellow pigment used in paints. Suppose 0.50 L of a 1.0×10^{-5} M Pb(C ₂ H ₃ O ₂) and 0.50 L of a 1.0×10^{-3} M K ₂ CrO ₄ solution are mixed. Calculate the equilibrium concentration of Pb ²⁺ ion remaining in the solution after PbCrO ₄ precipitates. What is the percentage of Pb ²⁺ remaining in solution after the precipitation has occurred. (The K_{sp} for PbCrO ₄ is 1.8×10^{-14}).				
	$Pb^{2+} + CrO_4^{2-} \rightleftharpoons PbCrO_4(s)$			
	Ini. # moles $0.50 \times 1.0 \times 10^{-5}$ $0.50 \times 1.0 \times 10^{-3}$ 0			
	$= 5.0 \times 10^{-6} \qquad = 5.0 \times 10^{-4} \qquad \qquad 0$			
	Final. # moles $0 \qquad 5.0 \times 10^4 - 5.0 \times 10^{-6} \qquad 5.0 \times 10^{-6}$			
	Final. Conc. (M) 0 4.95×10^4 5.0×10^6			
	<i>i.e.</i> , solid PbCrO ₄ is in contact with a solution			
	containing 4.95×10^{-4} M CrO ₄ ²⁻ ions.			

	PbCrO ₄ (s)	$\implies Ph^{2+}$	$+ CrO^{2-}$
[Initial]	100104(0)	0	4.95×10^{-4}
[At e.q.]	(s)	s	$4.95 \times 10^{-4} + s \approx 4.95 \times 10^{-4}$
$s = [Pb^{2+}]$	$CrO_4^{2-}] = s \cdot (4.95 \times 10^{-11} \text{ M})$ = 3.6 × 10 ⁻¹¹ M polution vs precipi		$.8 \times 10^{-14}$ $\frac{.6 \times 10^{-11}}{.0 \times 10^{-6}} \times 100\% = 7.3 \times 10^{-4}\%$
A complete precipitation!			

44

Fractional Precipitation

Fractional precipitation is the technique of separating two or more ions from a solution by adding a reactant that precipitates first one ion, then another, and so forth.

 $(\operatorname{Ba}^{2^{+}}, \operatorname{Sr}^{2^{+}}) \xrightarrow{\operatorname{K_2CrO_4}} \operatorname{BaCrO_4} \downarrow (+\operatorname{Sr}^{2^{+}})$ $\xrightarrow{\operatorname{K_2CrO_4}} \operatorname{SrCrO_4} \downarrow (\text{when } [\operatorname{Ba}^{2^{+}}] \sim [\operatorname{Sr}^{2^{+}}])$ $[K_{sp[\operatorname{BaCrO_4}]} (2.3 \times 10^{-10} \ll K_{sp[\operatorname{SrCrO_4}]} (4 \times 10^{-5})]$

Separation by Precipitation

EXAMPLE: Can Fe³⁺ and Mg²⁺ be separated quantitatively as hydroxides from a solution that is 0.10 M in each cation? If the separation is possible, what range of OH⁻ concentrations is permissible.

 $K_{sp} = [Fe^{3+}][OH^{-}]^{3} = 2 \times 10^{-39}$

 $K_{sp} = [Mg^{2+}][OH^{-}]^{2} = 7.1 \times 10^{-12}$

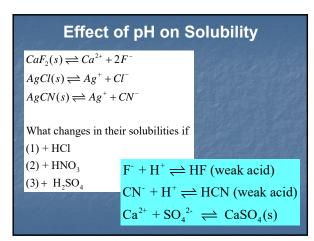
46

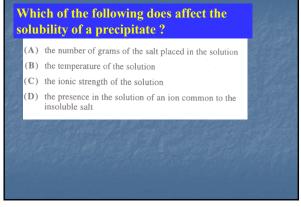
Assume quantitative separation requires that the concentration of the less soluble material to have decreased to $< 1 \times 10^{-6}$ M before the more soluble material begins to precipitate. Assume $[Fe^{3+}] = 1.0 \times 10^{-6}$ M What will be the $[OH^{-}]$ required to reduce the $[Fe^{3+}]$ to $[Fe^{3+}] = 1.0 \times 10^{-6}$ M ? $K_{sp} = [Fe^{3+}][OH^{-}]^{3} = 2 \times 10^{-39}$ $[OH^{-}]^{3} = \frac{2 \times 10^{-39}}{1.0 \times 10^{-6}} = 2 \times 10^{-33}$ $[OH^{-}] = 1.3 \times 10^{-11}$ M

47

$K_{\rm sp} = [{\rm Mg}^{2+}][{\rm OH}^{-}]^2 = 7.1 \text{ X } 10^{-12}$

```
What [OH^{-}] is required to begin the precipitation
of Mg(OH)<sub>2</sub>?
[Mg^{+2}] = 0.10 \text{ M}
(0.10 \text{ M})[OH^{-}]^{2} = 7.1 \times 10^{-12}
```


```
[OH^{-}]^{2} = \frac{7.1 \times 10^{-12}}{0.10} = 7.1 \times 10^{-11}[OH^{-}] = 8.4 \times 10^{-6} M
```


Since 1.3×10^{-11} M is less than 8.4×10^{-6} M, the Fe³⁺ will be quantitatively removed long before the Mg(OH)₂ begins to form. Therefore, the separation is possible between [OH⁻] 1.3×10^{-11} M and [OH⁻] = 8.4×10^{-6} M. (pH range?)

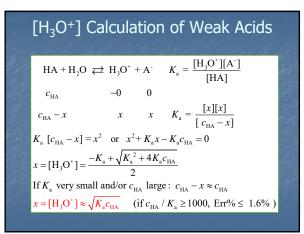
49

Whi wate		he <i>lowest</i> molar solubility in
(A)	AgBr	$(K_{\rm sp} = 5.0 \times 10^{-13})$
(B)	PbI ₂	$(K_{\rm sp} = 7.9 \times 10^{-9})$
(C)	HgI_2	$(K_{\rm sp} = 1.3 \times 10^{-19})$
(D)	AgI	$(K_{\rm sp} = 8.3 \times 10^{-17})$
111 - 1		

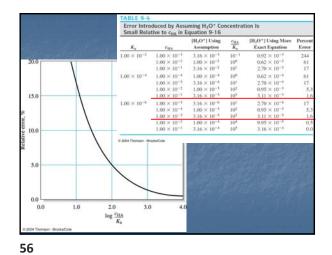
50

In which solution is the low soluble?	v solubility salt CaF ₂ most
(A) 0.010 M HNO ₃	(B) 0.010 M KNO ₃
(C) $0.010 \text{ M Ca}(\text{NO}_3)_2$	(D) 0.010 M NaF

A saturated solution of Cu(II) hydroxide has a pH of 10. Calculate the K_{sp} for the Cu(II) hydroxide.


53

Acid-Base Dissociation Constants


Example

Calculating concentrations of H_3O^+ and OH^- in solutions of a strong acid or base.

Calculate the concentrations of hydronium ion and hydroxide ion at 25°C in 0.10 M HCl.

[OH⁻] Calculation of Weak Bases

$$B + H_2O \rightleftharpoons BH^+ + OH^- \quad K_b = \frac{[BH^+][OH^-]}{[B]}$$

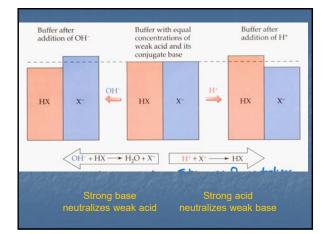
$$c_B \qquad 0 \qquad \sim 0$$

$$c_B - x \qquad x \qquad x \qquad K_b = \frac{[x][x]}{[c_B - x]}$$

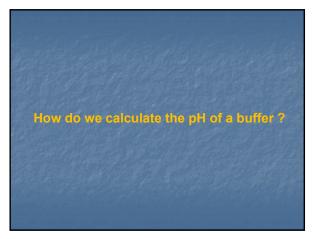
$$K_b [c_B - x] = x^2 \text{ or } x^2 + K_b x - K_b c_B = 0$$

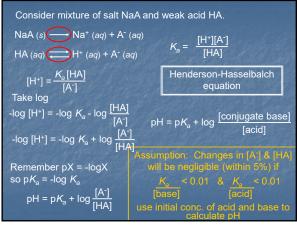
$$x = [OH^-] = \frac{-K_b + \sqrt{K_b^2 + 4K_b c_B}}{2}$$
If K_b very small and/or c_B large : $c_B - x \approx c_B$

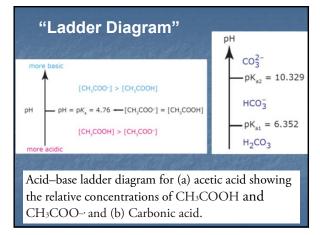
$$x = [OH^-] \approx \sqrt{K_b c_B}; \quad [H_3O^+] = K_w/[OH^-]$$

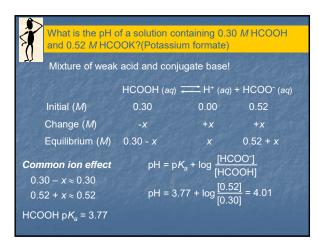

Buffer Solutions

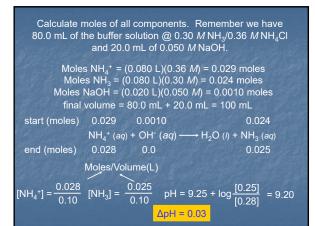
A buffer is a solution characterized by the ability to resist changes in pH with dilution or with addition of limited amounts of acid or base.

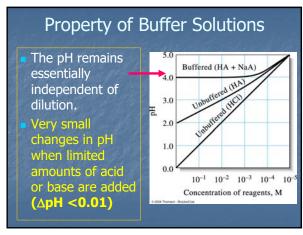

Buffers contain either a weak acid and its conjugate base or a weak base and its conjugate acid.


Thus, a buffer solution contains both an acid species and a base species in equilibrium.

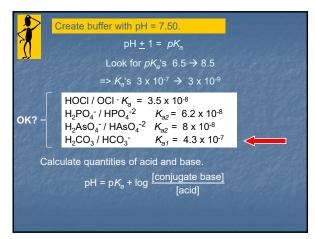








Calculate the pH of the 0.30 M NH₃/0.36 M NH₄Cl buffer system. What is the pH after the addition of 20.0 mL of 0.050 M NaOH to 80.0 mL of the buffer solution? $NH_4^* (aq) \longrightarrow H^* (aq) + NH_3 (aq)$ $pH = pK_a + \log \frac{[NH_3]}{[NH_4^*]} \quad pK_a = 9.25 \quad pH = 9.25 + \log \frac{[0.30]}{[0.36]} = 9.17$ $K_a = 5.6 \times 10^{-10}$ $\Rightarrow pOH = 14 - pH = 4.73 \quad [OH-] = 1.8 \times 10^{-5} \text{ M}$



How do we build a better buffer? Add approximately equal quantities of acid and base Have relatively high concentrations of acid and base → the larger the facid] & [base] the greater the buffer capacity.

How do we prepare a buffer at a given pH? Choose acid/base conjugate pair from table Check to be sure that they are unreactive in the system used $\rho K_a \approx$ pH typical rule of thumb pH <u>+</u> 1 = ρK_a

Chapter 9 Summary

Classification of electrolytes

 $H_2CO_3 / HCO_3^ K_{a1} = 4.3 \times 10^{-7}$ *pK*_{a1} = 6.37

pH - p $K_a = \log \frac{[\text{HCO}_3^-]}{[\text{H}_2\text{CO}_3]}$

[H₂CO₃]

Set [H₂CO₃] = 0.0100 M (NOTE: This is a judgment call.)

Alkaline

-Milk - Theoretical "pure" rain, pH 5.6 -Most fish species die, pH 4.5-5.0

negar

- Battery acid - Acidic mine water, Iron Mountain, Calif.

-Lye -Ammonia

24

-Milk of magnesia

Seawater

-Human blood -Neutral

----Most acidic rainfall recorded in U.S. at Wheeling, W. Va.

then $[HCO_3^-] = 13.6 [H_2CO_3] = 0.136 M$

 $10^{-1.13} = 13.6 = \frac{[HCO_3^{-1}]}{[HCO_3^{-1}]}$

Baking soda Lake Ontario-Human urine -Saliva, pH 5.7-7.1-

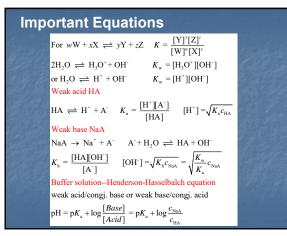
Acidic

6

Tomato juice erage pH of rainfall, ronto, February 1979

Apples-

on juice-


70

71

- Common-ion effect • Equilibrium constants

 Acids and bases Ion-product of water Acid-base dissociation Conjugate acid-base pairs

 Buffer capacity Buffer solutions Amphiprotic species Autoprotolysis Solubility product

