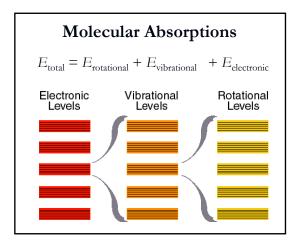
Chapter 26

Molecular Absorption Spectrometry

Molar Absorptivities


Beer's Law: A=εbc
What would be the maximum value of ε in theory?

 E = 8.7 × 10⁻¹⁹ S×P (0~10⁵ L/(cm mol)
 S: cross section of molecule in cm² (~10⁻¹⁵ cm²)
 P: Probability of the electronic transition (0-1)
 P>0.1-1 → allowable transitions, strong absorption band, ε_{max}= 10⁴~10⁵
 P<0.01 → forbidden transitions, ε_{max}< 10³

How Sensitive of the UV-Visible Spectrometry Would be?

- Assume *A* = 0.01 (with large instrumental error%), *b* = 1.00 cm, *c* = ? M
- $c = A/(\varepsilon_{max}b) = 0.01/(10^5 \times 1) = 1 \times 10^{-7} \text{ M}$

 $c_{\rm min} = 10^{-6} - 10^{-7} \,\mathrm{M}$

UV-VIS Spectroscopy

UV-Visible excitation→

Electronic Transitions in Molecules

--The absorption of the light source over wavelength → UV-Visible spectra

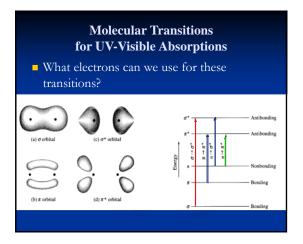
What is the electronic transition?

photon absorption promotes an electron from a bonding to an anti-bonding orbital

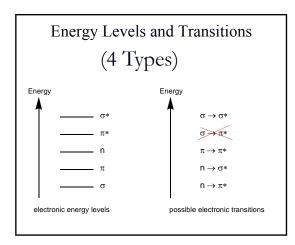
Molecular Absorption

• $M + h\nu \rightarrow M*$

(Absorption 10⁻⁸ sec)


• $M* \rightarrow M + heat$

(Most of Organic Molecules)


(Thermal relaxation process)

 $\bullet M^* \rightarrow A+B+C$

(Photochemical decomposition)

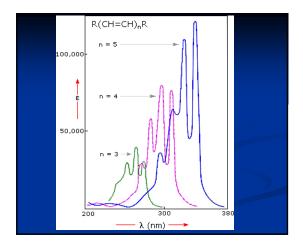


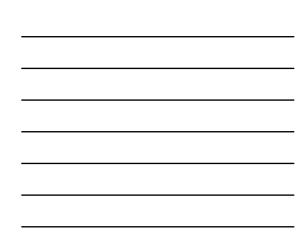
$\sigma \rightarrow \sigma^*$ Transition (Rarely Used for UV-Vis)

- Methane, $\lambda_{max} = 125$ nm, (C-H Bonds only)
- Ethane, λ_{max} = 135 nm,
 (C-C and C-H bonds, Strength of C-C < C-H)
- Hexane, $\lambda_{\text{max}} = 135 \text{ nm} (\epsilon = 10, 000)$

n → σ* (containing O, N, S, X) (λ_{max} 150 → 250 nm)

Compound	$\lambda_{max}(nm)$	€max	
H ₂ O	167	1480	
CH ₃ OH	184	150	
CH ₃ Cl	173	200	LO
CH ₃ I	258	365	LU
$(CH_3)_2S^b$	229	140	
(CH3)2O	184	2520	
CH ₃ NH ₂	215	600	
(CH ₃) ₃ N	227	900	


$n \rightarrow \pi^*, \pi \rightarrow \pi^*$

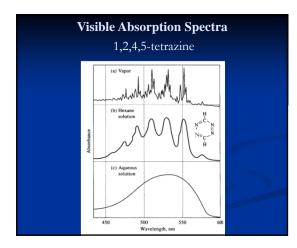

- $\lambda_{\text{max}} = 200 700 \text{ (UV-Visible region)}$
- Unsaturated compounds (double bonds)
- n → π^* , low ε value (10-100 M cm⁻¹)
- $\pi \rightarrow \pi^*$, strong absorption, ε 1000-10,000 M cm⁻¹)

Summary of transitions for organic molecules

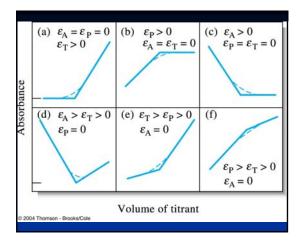
- $\sigma \rightarrow \sigma^*$ transition in vacuum UV (single bonds)
- $n \rightarrow \sigma^*$ saturated compounds with non-bonding
- electrons $\lambda \sim 150-250 \text{ nm}$
- 100.2000 (
- $\epsilon \sim 100-3000 \text{ (not strong)}$
- n → π*, π → π* requires unsaturated functional groups (eq. double bonds) most commonly used, energy good range for UV/Vis
- $\bullet \qquad n \rightarrow \pi^* : \varepsilon \sim 10\text{-}100$
- π → π*: ε ~ 1000 10,000

Rule of thumb for conjugation						
If greater then <u>one</u> single bond apart						
- ϵ are relatively additive (hyperchromic shift) - λ constant						
$CH_{3}CH_{2}CH_{2}CH=CH_{2} \lambda_{max}=184 \qquad \epsilon_{max}=-10,000$						
$CH_2=CHCH_2CH_2CH=CH_2$ $\lambda_{max}=185$ $\varepsilon_{max}=-20,000$						
If conjugated - shifts to higher λ's (red shift)						
$H_2C=CHCH=CH_2$ $\lambda_{max}=217$ $\varepsilon_{max}=\sim21,000$						





	Linear	Polyenes			
$\left(CH = CH \right)_{n}$					
n	name	λ _{max} (nm)	ε _{max} (M ⁻¹ cm ⁻¹		
1	ethylene	163	?		
2	butadiene	217	21,000		
3	hexatriene	268	35,000		
4	octatetraene	304	?		
5	decapentaene	328	120,000		


Aromatic Compounds								
Linear Fused Aromatics (1)								
structure	name	λ _{max} (nm)	ε _{max} (M ⁻¹ cm ⁻¹)]				
\bigcirc	benzene	255	220					
(naphthalene	315	320					
	anthracene	357	10,000					
	tetracene	471	10,000					
				-				

Photometric Titrations

- A photometric titration curve is a plot of absorbance as a function of the volume of titrant.
- The spectrometer detects the color change of an indicator allowing the endpoint to be accurately determined.
- For example: titration of an acid and base using phenolphthalein clear → pink
- Plot absorbance as a function of the pH.

