



#### Definition

- Potentiometric methods are based upon measurements of the potential of electrochemical cells in the absence of appreciable currents.
- $\rightarrow$  an equilibrium measurement
- $\rightarrow$  the Nernst equation is applicable.

2









### Applications of Potentiometry

 Billions of these measurements are made annually. Importance in environmental and medical applications.

For example,

pH, conductivity, ion selective electrodes (ISEs, Cl<sup>-</sup>, Ca<sup>2+</sup>,HCN, SO<sub>2</sub>, NH<sub>3</sub>), blood gas analysis (O<sub>2</sub>, CO<sub>2</sub>).

5

#### Reference Electrodes

 Purpose: provide stable potential against which other potentials can be reliably measured

Criteria:

⊖stable (time, temperature)

- Oreproducible (you, me)
- potential shouldn't be altered by passage of small current
- Oeasily constructed
- Oconvenient for use









| Calomel Electrodes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | s                              |                                                                   |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|-------------------------------------------------------------------|
| $Hg_2Cl_2(s) + 2e = 2Hg(l) + 2Cl^{-1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $E^0_{\text{Hereform}} = 0.20$ | 58 V vs SHE                                                       |
| $E_{\rm Hg,Cl_2/Cl^2} = E_{\rm Hg,Cl_2/Cl^2}^0 + \frac{RT}{2E} \ln \frac{1}{4\pi}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $\frac{1}{1} = 0.268 - 0$      | .059210g <i>a<sub>cr</sub></i>                                    |
| $= \frac{2}{100} E \qquad (Software)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                | 5 M                                                               |
| $a_{CT}$ , $F_{Hg_2Cl_2/CT}$ $rac{}{}$ . (Satured                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 4 KCl, [Cl <sup>-</sup> ]~4    | 5 M)                                                              |
| $\frac{a_{CT} \nearrow, E_{Hg_3Cl_2/CT}}{Electrode} \cdot \cdot$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 4 KCl, [Cl <sup>-</sup> ]~4    | 5 M)<br>Potential vs.                                             |
| $\frac{a_{CT} \nearrow, E_{Hg_2Cl_2/CT}}{Electrode}$ (298K)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | i KCl, [Cl <sup>-</sup> ]~4.   | 5 M)<br>Potential vs.<br>SHE                                      |
| $\frac{a_{C\Gamma} \nearrow, E_{Hg_2Cl_2/C\Gamma}}{Electrode}$ $\frac{(298K)}{Hg(l)/Hg_2Cl_2(s)/KCl (0.1 M)}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | KCl, [Cl <sup>-</sup> ]~4.     | 5 M)<br>Potential vs.<br>SHE<br>0.3356                            |
| $\frac{a_{CT} \nearrow, E_{Hg_2Cl_2/CT}}{Electrode}$ $\frac{Electrode}{(298K)}$ $Hg(l)/Hg_2Cl_2(s)/KCl (0.1 M)$ $Hg/Hg_2Cl_2(s)/KCl (1 M)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Acronym                        | 5 M)<br>Potential vs.<br><u>SHE</u><br>0.3356<br>0.2801           |
| $\begin{array}{c} \begin{array}{c} & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ \hline \end{array} \\ \hline \\ \hline \\ & & \\ & \\ \hline \\ & & \\ \hline \\ \\ & & \\ \hline \\ \\ \hline \\ \\ & & \\ \hline \\ \hline \\ \\ \hline \\ \hline \\ \\ \hline \\ \\ \hline \\ \\ \hline \hline \\ $ | Acronym<br>NCE<br>SCE          | 5 M)<br>Potential vs.<br><u>SHE</u><br>0.3356<br>0.2801<br>0.2444 |









|                    |                    | Electrode Potential vs. SHE, V              |                        |                    |                                    |  |  |
|--------------------|--------------------|---------------------------------------------|------------------------|--------------------|------------------------------------|--|--|
| Temperature,<br>°C | 0.1 M*<br>Calomel* | 3.5 M <sup>+</sup><br>Calomel <sup>te</sup> | Saturated*<br>Calomel* | 3.5 Mbs<br>Ag-AgCl | Saturated <sup>5,</sup><br>Ag-AgCl |  |  |
| 10                 | -                  | 0.256                                       | -                      | 0.215              | 0.214                              |  |  |
| 12                 | 0.3362             | _                                           | 0.2528                 | 1                  | -                                  |  |  |
| 15                 | 0.3362             | 0.254                                       | 0.2511                 | 0.212              | 0.209                              |  |  |
| 20                 | 0.3359             | 0.252                                       | 0.2479                 | 0.208              | 0.204                              |  |  |
| 25                 | 0.3356             | 0.250                                       | 0.2444                 | 0.205              | 0.199                              |  |  |
| 30                 | 0.3351             | 0.248                                       | 0.2411                 | 0.201              | 0.194                              |  |  |
| 35                 | 0.3344             | 0.246                                       | 0.2376                 | 0.197              | 0.189                              |  |  |
| 38                 | 0.3338             | -                                           | 0.2355                 |                    | 0.184                              |  |  |
| 40                 | -                  | 0.244                                       |                        | 0.193              |                                    |  |  |

















Two General Types of Indicator Electrodes
Metallic Indicator Electrodes;

→ the electrode normally consists of a metal, and the electrode potential is directly correlated to the concentration (activity) of the analyte.

Membrane Indicator Electrodes [Ion

Membrane Indicator Electrodes [Ion Selective Electrodes (ISE)].

 $\rightarrow$  a key component of the electrode is a membrane (cystalline or non-cystalline membrane)



• Electrode response given by Nernst  
equation (Nernstian):  
$$M^{n^{+}} + ne = M(s)$$
$$E = E^{0} + \frac{RT}{nF} \ln a_{M^{n^{+}}}$$
$$E = E^{0} + \frac{0.0592}{n} \log a_{M^{n^{+}}} \quad (at \ 298K)$$
$$= E^{0} - \frac{0.0592}{n} pM$$









#### Membrane (or lon Selective) Electrodes

Properties of Membrane:

- Low solubility solids, semi-solids and polymers
- Some electrical conductivity often by doping
- Selectivity part of membrane binds/reacts with analyte































**Boundary Potential**  

$$E_{b} = E_{1} - E_{2} = 0.05921 \text{ og } \frac{a_{1}}{a_{2}}$$
as  $a_{2}$  is the hydrogen ion activity of the internal solution  
(constant)  
 $E_{b} = L' + 0.05921 \text{ og } a_{1} = L' - 0.0592 \text{ pH}$   
where  
 $L'$  (constant) = -0.05921 \text{ og } a\_{2}

The pH Meter Potential  

$$E_{cell} = E_{glass \ electrode} - E_{external \ ref}$$

$$= (E_b + E_{internal \ ref}) - E_{external \ ref}$$

$$= [(L' - 0.0592 \text{ pH}) + E_{internal \ ref}] - E_{external \ ref}$$

$$= (L' + E_{internal \ ref} - E_{external \ ref}) - 0.0592 \text{ pH}$$

$$E_{cell} = K - 0.0592 \text{ pH}$$







Selectivity Coefficients  $E_b = K' + 0.0592 \log(a_1 + k_{H,B}b_1)$ (For all membrane Electrodes) Where  $k_{H,B}$  is the *selectivity coefficient* for the electrode  $b_1$  is the activity of the alkali metal Range between 0 (no interference) to 1 (as sensitive to alkali and hydrogen ions) to >1 (large interference)

38

For a Corning 015 glass membrane, the selectivity coefficient  $K_{\rm H^+/Na^+}$  is  $\approx 10^{-11}$ . What is the expected error if we measure the pH of a solution in which the activity of H<sup>+</sup> is  $2 \times 10^{-13}$  and the activity of Na<sup>+</sup> is 0.05?

SOLUTION

A solution in which the actual activity of  $H^+$ ,  $(a_{H^+})_{act}$ , is  $2 \times 10^{-13}$  has a pH of 12.7. Because the electrode responds to both  $H^*$  and  $Na^+$ , the apparent activity of  $H^+$ ,  $(a_{H^+})_{app}$ , is

$$(a_{\rm H^+})_{\rm app} = (a_{\rm H^+})_{\rm act} + (K_{\rm H^+/Na^+} \times a_{\rm Na^+}) =$$

 $2 \times 10^{-13} + (10^{-11} \times 0.05) = 7 \times 10^{-13}$ 

The apparent activity of  $\rm H^+$  is equivalent to a pH of 12.2, an error of –0.5 pH units.

#### Precaution in use of pH electrode/meter

- Place the new/dry electrode into a distilled water for ~24 h before use.
- Always keep the electrode in distilled water after use.
- Fill electrolyte solution for external ref. if necessary.
- Use suitable buffer solutions (2 buffers, fresh) to calibrate the electrode/meter first.
- Avoid using the electrode in strong basic/acid solution (pH 0.5-10,12)
- Errors in low ionic strength solutions (e.g., lake sample)

40



41

## Glass Electrodes for Other Cations

- Maximize k<sub>H,B</sub> for other ions by modifying glass surface (usually adding Al<sub>2</sub>O<sub>3</sub> or B<sub>2</sub>O<sub>3</sub>)
- Possible to make glass membrane electrodes for Na<sup>+</sup>, K<sup>+</sup>, NH<sub>4</sub><sup>+</sup>, Cs<sup>+</sup>, Rb<sup>+</sup>, Li<sup>+</sup>, Ag<sup>+</sup> ...













| Io                                                                                        | n                                                                                                                               | Concentration<br>range (M)                                                                                                                                     | Membrane<br>material                                                                                                        | pH<br>range                                                                                               | Inter                                         | fering<br>es                           |                                                                                                                                                                                                                                                                                                                         |
|-------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|-----------------------------------------------|----------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| F                                                                                         | -                                                                                                                               | 10-6-1                                                                                                                                                         | LaF,                                                                                                                        | 5-8                                                                                                       | OH-(                                          | 0.1 M)                                 |                                                                                                                                                                                                                                                                                                                         |
| C                                                                                         | -                                                                                                                               | $10^{-4} - 1$                                                                                                                                                  | AgCl                                                                                                                        | 2-11                                                                                                      | CN-,                                          | S2 1 S                                 | -Of-, Br-                                                                                                                                                                                                                                                                                                               |
| B                                                                                         | r-                                                                                                                              | $10^{-5} - 1$                                                                                                                                                  | AgBr                                                                                                                        | 2-12                                                                                                      | CN <sup>-</sup> .                             | S21-                                   |                                                                                                                                                                                                                                                                                                                         |
| 1-                                                                                        |                                                                                                                                 | $10^{-6} - 1$                                                                                                                                                  | AgI                                                                                                                         | 3-12                                                                                                      | S2-                                           |                                        |                                                                                                                                                                                                                                                                                                                         |
| S                                                                                         | CN-                                                                                                                             | $10^{-5} - 1$                                                                                                                                                  | AgSCN                                                                                                                       | 2-12                                                                                                      | S21                                           | -, CN-, B                              | r S.Of-                                                                                                                                                                                                                                                                                                                 |
| C                                                                                         | N-                                                                                                                              | 10-6-10-2                                                                                                                                                      | Agl                                                                                                                         | 11-13                                                                                                     | S2-, 1                                        | =                                      |                                                                                                                                                                                                                                                                                                                         |
|                                                                                           |                                                                                                                                 |                                                                                                                                                                |                                                                                                                             |                                                                                                           |                                               |                                        |                                                                                                                                                                                                                                                                                                                         |
| Table 1                                                                                   | 5-6 Pro                                                                                                                         | 10 <sup>-5</sup> -1                                                                                                                                            | Ag <sub>2</sub> S                                                                                                           | 13-14                                                                                                     |                                               |                                        |                                                                                                                                                                                                                                                                                                                         |
| Table 1                                                                                   | 5-6 Pro<br>Concer<br>range (                                                                                                    | 10 <sup>-5</sup> –1<br>perties of liquid-based<br>stration<br>M) Carrier                                                                                       | Ag <sub>2</sub> S                                                                                                           | 13–14<br>Solvent fo                                                                                       | r                                             | pH range                               | Interfering<br>species                                                                                                                                                                                                                                                                                                  |
| Table 1<br>Ion<br>Ca <sup>2+</sup>                                                        | 5-6 Pro<br>Concer<br>range (<br>10 <sup>-5</sup> -1                                                                             | 10 <sup>-3</sup> –1<br>perties of liquid-based<br>tration<br>M) Carrier<br>Calcium die                                                                         | Ag <sub>2</sub> S<br>ion-selective electrodes<br>ecylphosphate                                                              | 13–14<br>Solvent fo<br>carrier<br>Dioctylphi<br>phospho                                                   | r<br>enyl-<br>mate                            | pH range<br>6-10                       | Interfering<br>species<br>Zn <sup>2+</sup> , Pb <sup>2+</sup> ,<br>Fe <sup>2+</sup> , Cu <sup>2+</sup>                                                                                                                                                                                                                  |
| Table 1<br>Ion<br>Ca <sup>2+</sup>                                                        | 5-6 Pro<br>Concer<br>range (<br>10 <sup>-5</sup> -1<br>10 <sup>-6</sup> -1                                                      | 10 <sup>-&gt;</sup> -1<br>perties of liquid-based<br>tration<br>M) Carrier<br>Calcium die<br>Valinomycii                                                       | Ag <sub>2</sub> S<br>ion-selective electrodes<br>ecylphosphate                                                              | 13–14<br>Solvent fo<br>carrier<br>Dioctylpho<br>phospho<br>Dioctylset                                     | r<br>enyl-<br>mate<br>sacate                  | pH range<br>6-10<br>4-9                | Interfering<br>species<br>Zn <sup>2+</sup> , Pb <sup>2+</sup> ,<br>Fe <sup>2+</sup> , Cu <sup>2+</sup><br>Rb <sup>+</sup> , Cs <sup>+</sup> , NH <sup>4</sup>                                                                                                                                                           |
| Table 1<br>Ion<br>Ca <sup>2+</sup><br>NO <sub>3</sub>                                     | 5-6 Pro<br>Concer<br>range (<br>10 <sup>-5</sup> -1<br>10 <sup>-6</sup> -1                                                      | 10 <sup>-5</sup> -1<br>perties of liquid-based<br>tration<br>M) Carrier<br>Calcium dic<br>Valinomycin<br>Tridodecylh<br>nitrate                                | Ag <sub>2</sub> S<br>ion-selective electrodes<br>ecylphosphate<br>exadecylammonium                                          | 13–14<br>Solvent fo<br>carrier<br>Dioctylph<br>Dioctylset<br>Octyl-2-ni<br>ether                          | enyl-<br>onate<br>sacate<br>trophenyl         | pH range<br>6-10<br>4-9<br>3-8         | Interfering<br>species<br>Zn <sup>2+</sup> , Pb <sup>2+</sup> ,<br>Fe <sup>2+</sup> , Cu <sup>2+</sup><br>Rb <sup>+</sup> , Cs <sup>+</sup> , NH <sup>4</sup> <sub>4</sub><br>ClO <sub>4</sub> , I <sup>+</sup> , ClO <sub>5</sub> ,<br>Br <sup>-</sup> , HS <sup>-</sup> , CN                                          |
| S<br>Table 1<br>Ta <sup>2+</sup><br>K <sup>+</sup><br>NO <sub>3</sub><br>CIO <sub>4</sub> | <b>5-6</b> Pro<br>Concer<br>range (<br>10 <sup>-5</sup> -1<br>10 <sup>-6</sup> -1<br>10 <sup>-5</sup> -1<br>10 <sup>-5</sup> -1 | 10 <sup>-5</sup> -1<br>perties of liquid-based<br>tration<br>M) Carrier<br>Calcium die<br>Valinomycin<br>Tridodecylh<br>nitrate<br>Tris(substith<br>iron(II) p | Ag <sub>2</sub> S<br>ion-selective electrodes<br>ecylphosphate<br>exadecylammonium<br>ted 1,10-phenanthroline)<br>rethorate | 13–14<br>Solvent fo<br>carrier<br>Dioctylph<br>phosphe<br>Dioctylset<br>Octyl-2-ni<br>ether<br>p-Nitrocyr | enyl-<br>onate<br>sacate<br>trophenyl<br>nene | pH range<br>6-10<br>4-9<br>3-8<br>4-10 | Interfering<br>species<br>Zn <sup>2+</sup> , Pb <sup>2+</sup> ,<br>Fe <sup>2+</sup> , Cu <sup>2+</sup><br>Rb <sup>+</sup> , Cs <sup>+</sup> , NH <sup>2</sup><br>ClO <sub>4</sub> , 1 <sup>-</sup> , ClO <sub>5</sub> ,<br>Br <sup>-</sup> , HS <sup>-</sup> , CN<br>1 <sup>-</sup> , NO <sub>5</sub> , Br <sup>-</sup> |









# Chapter 21 Summary

- · Cells for potentiometric determinations
- · Measurement of cell potentials
- Determination of pH with the glass electrode
- Determination of ions with membrane electrodes
- Molecular sensing electrodes

49

Important Equations  

$$E_{cell} = (E_{ind} - E_{ref}) + E_j$$
  $(E_j \sim mV)$   
 $E_b = L' + 0.0592 \log a_1 = L' - 0.0592 pH$   
 $E_{cell} = K \pm \frac{0.0592}{n} \log M^{n\pm}$   
 $= K \mp \frac{0.0592}{n} pM^{n\pm}$   
 $pH_u = pH_s + \frac{E_s - E_u}{0.0592} = pH_s - \frac{(E_u - E_s)}{0.0592}$