Chapter 17

Complexation Reactions and Titrations

1

Complexation Titration

- Also knowns as complexometric titration, complexometry, or chelatometry
- One of the classical titrimetric methods developed for the rapid and quantitative chemical analysis of metal ions.
- Based on complex formation between metal ion (cation) and complexing agent (ligand).

5×0 5×0

+ M

 $Ag^{+} + 2(:NH_{3}) \rightleftharpoons [H_{3}N:Ag:NH_{3}]^{+}$ Electron cofiguration Ag [Kr]4d¹⁰5s¹5p⁰ Ag⁺ [Kr]4d¹⁰5s⁰5p⁰, sp hybrid orbitals accept 2 pairs of electrons, linear geometry • **Complex ion:** A charged compound (+ or -)

consisting of coordinate covalent bond.

• Complex (Coordinate compound): a compound of neutral complex species.

 $[Ag(NH_3)_2]^+ vs [Ag(NH_3)_2](OH)$

4

- When there are three (four) groups, it is called *tridentate (tetradentate)* ligand, etc.
- When a *bidentate* (or higher number of donor groups present in the ligand) forms a complex with a metal cation, we call the resulting compound a *metal chelate* ("kee'late"-claw).
- As titrants, *multidentate ligands*, particularly those with 4 to 6 donor groups have the advantage that they usually react in a single step process, and their reactions with the metal cation are more complete than their *unidentate* counterparts.

8

Complexation Equilibria $Cu^{2+} + NH_{3} \xrightarrow{K_{1}} Cu (NH_{3})^{2+}$ $Cu(NH_{3})^{2+} + NH_{3} \xrightarrow{K_{2}} Cu (NH_{3})^{2+}$ $Cu(NH_{3})^{2+}_{2} + NH_{3} \xrightarrow{K_{3}} Cu (NH_{3})^{2+}_{3}$ $Cu(NH_{3})^{2+}_{3} + NH_{3} \xrightarrow{K_{4}} Cu (NH_{3})^{2+}_{4}$ $Cu^{2+} + 4NH_{3} \xleftarrow{K_{f}} Cu (NH_{3})^{2+}_{4}$ $K_{f} = K_{1}K_{2}K_{3}K_{4} = \beta_{4}$ $K_{f} (\beta_{4}) - \text{formation constant}$

• Complexation reactions occur in a stepwise fasion $M + L \rightleftharpoons ML \qquad K_{1} = \frac{[ML]}{[M][L]}$ $ML + L \rightleftharpoons ML_{2} \qquad K_{2} = \frac{[ML_{2}]}{[ML][L]}$ $ML_{2} + L \rightleftharpoons ML_{3} \qquad K_{3} = \frac{[ML_{3}]}{[ML_{2}][L]}$... $ML_{n-1} + L \rightleftharpoons ML_{n} \qquad K_{n} = \frac{[ML_{n}]}{[ML_{n-1}][L]}$

Alpha (
$$\alpha$$
) Values
Fraction of the Total Metal Concentration

$$\alpha_{M} = \frac{[M]}{c_{M}} \qquad \alpha_{ML} = \frac{[ML]}{c_{M}}$$

$$\alpha_{ML_{2}} = \frac{[ML_{2}]}{c_{M}} \qquad \alpha_{ML_{n}} = \frac{[ML_{n}]}{c_{M}}$$

$$c_{M} = [M] + [ML] + [ML_{2}] + \dots + [ML_{n}]$$

$$= [M] + \beta_{1}[M][L] + \beta_{2}[M][L]^{2} + \dots + \beta_{n}[M][L]^{n}$$

$$= [M] \{1 + \beta_{1}[L] + \beta_{2}[L]^{2} + \dots + \beta_{n}[L]^{n}\}$$

$$\alpha_{\rm M} = \frac{1}{1 + \beta_1[L] + \beta_2[L]^2 + ... + \beta_n[L]^n}$$

$$\alpha_{\rm ML} = \frac{\beta_1[L]}{1 + \beta_1[L] + \beta_2[L]^2 + ... + \beta_n[L]^n}$$

$$\alpha_{\rm ML_2} = \frac{\beta_2[L]^2}{1 + \beta_1[L] + \beta_2[L]^2 + ... + \beta_n[L]^n}$$

$$\alpha_{\rm ML_n} = \frac{\beta_n[L]^n}{1 + \beta_1[L] + \beta_2[L]^2 + ... + \beta_n[L]^n}$$

$$\alpha_i = f(\beta_i, [L]) \quad [vs. \ \alpha_i = f(K_a, [H^+])]$$

EDTA

- It forms 1:1 complexes with most metals. (Not with Group 1A metals – Na, K, Li)
- Forms stable water soluble complexes.
- High formation constants.
- A primary standard material a highly purified compound that serves as a reference material.

M"+	$+ Y^{4-} \equiv$	\Rightarrow MY ⁽ⁿ⁻²⁾	K_N	$_{\rm IY} = \frac{1011}{[{\rm M}^{n+}]}$][Y ⁴⁻]		
TABLE 17-4 Formation Constants for EDTA Complexes							
Cation	$K_{\rm MY}^*$	$\log K_{\rm MY}$	Cation	K _{MY}	$\log K_{\rm M}$		
Ag ⁺	2.1×10^{7}	7.32	Cu ²⁺	6.3×10^{18}	18.80		
Mg ²⁺	4.9×10^{8}	8.69	Zn ²⁺	3.2×10^{16}	16.50		
Ca ²⁺	5.0×10^{10}	10.70	Cd^{2+}	2.9×10^{16}	16.46		
Sr ²⁺	4.3×10^{8}	8.63	Hg ²⁺	6.3×10^{21}	21.80		
Ba ²⁺	5.8×10^{7}	7.76	Pb ²⁺	1.1×10^{18}	18.04		
Mn ²⁺	6.2×10^{13}	13.79	Al ³⁺	$1.3 imes 10^{16}$	16.13		
Fe ²⁺	2.1×10^{14}	14.33	Fe ³⁺	1.3×10^{25}	25.1		
Co ²⁺	2.0×10^{16}	16.31	V ³⁺	7.9×10^{25}	25.9		
Ni ²⁺	4.2×10^{18}	18.62	Th^{4+}	1.6×10^{23}	23.2		

$$K_{MY} = \frac{[MY^{(n-4)^+}]}{[M^{n^+}][Y^{4^-}]} = \frac{[MY^{(n-4)^+}]}{[M^{n^+}]\alpha_4c_T}$$

Conditional formation constant:
$$K_{MY}' = \frac{[MY^{(n-4)^+}]}{[M^{n^+}]c_T} = \alpha_4 K_{MY}$$

$$K_{MY}' \le K_{MY} \text{ as } \alpha_4 \le 1.0$$

$$K_{MY}' \text{ is pH dependent!}$$

23

Example 17-4 Use speadsheet to construct the titration curve of pCa versus volume of EDTA for 50.0 mL of 0.00500 M Ca^{2+} being titrated with 0.0100 M EDTA in a solution buffered to a constant pH of 10.0

(1) pH = 10.0, α_4 = 0.35, K_{CaY} = 5.0 e10, K'_{CaY} = α_4 K_{CaY} = 1.75e10

(2) Equivalence point: v_{EDTA} = 50x0.00500/0.0100 = 25.0 mL

(3) Initial pCa: [Ca²⁺] = 0.00500 M, pCa = 2.30

(4) Pre-equivalence point: Ca (excess) + Y ⇔ CaY (disassociation negligible)						
[Ca] = [50.00	x0.00500-v _{edta}	x0.0100]/(50.00+v _{EDT} /)			
v _{EDTA} (mL)	[Ca]	pCa				
5.00	3.64e-3	2.44				
10.00	2.46e-3	2.61				
20.00	7.14e-4	3.15				
24.00	1.35e-4	3.87				
(5) At equival	ence point: <mark>Ca'</mark>	<mark>Y ⇔ Ca + Y, [Ca] = [Y</mark>]			
[CaY]/[Ca]^2	= K' _{MY} , [Ca] = {	[CaY]/K' _{MY} }^(1/2)				
[Ca] = {[50.00;	‹0.00500/(50.00+:	25.00)]/1.75e10}^0.5				
=4.36e-7	⁄M , pCa = 6.36	5				

Ca + Y x exce	ence point: ⇔ CaY ess ~equivalence	concentration
(50.00x0.00500) {[Ca][(0.0100xv _E	/(50.00+v _{EDTA})/ _{DTA} -50.00x0.00500)	/(50.00+v _{EDTA})]}=K' _N
[Ca]=0.25/{[0.0100)xv _{EDTA} -0.25]xK' _{MY} }=1.4	3e-11/(0.0100xv _{EDTA} -0.2
V _{EDTA} (mL)	[Ca]	pCa
26.00	1.42e-9	8.85
30.00	2.86-10	9.54
	9.53e-11	10.02
40.00		

Effect of Other Complexing Agents on EDTA Titration Curves

- A second complexing agent added to maintain the analyte metal ion in solution (many metal ions form insoluble hydroxides or oxides at slightly high pH).
- To "mask" or remove interfering ions present in the sample matrix.
- The second complexing agent ("masking agent") usually has a higher affinity for the interfering ion than the EDTA to prevent it from reacting with the EDTA.
- Most buffers will complex metal ions because they also contain functional groups (-OH, -COOH, -NH₂) which can form coordinate covalent bonds and their effect on the free metal ion concentration must be considered.

 $M + Y \rightleftharpoons MY \text{ (EDTA complexing)}$ $M + nL \rightleftharpoons ML_{n} \text{ (second complexing agent)}$ $K_{MY} = \frac{[MY]}{[M][Y]} \text{ ([M],[Y]--free concentration)}$ $K_{MY} = \frac{[MY]}{(\alpha_{M}c_{M})(\alpha_{4}c_{T})} = \frac{[MY]}{(\alpha_{M}\alpha_{4})c_{M}c_{T}}$ Conditional formation constant: $K''_{MY} = \alpha_{M}\alpha_{4}K_{MY} = \frac{[MY]}{c_{M}c_{T}}$ Where $\alpha_{M} = \frac{[M]}{c_{M}} = \frac{1}{1 + \beta_{1}[L] + \beta_{2}[L]^{2} + ... + \beta_{n}[L]^{n}}$

37

EDTA Titration Techniques

1. Direct Titration

*Buffer analyte to pH where K_f for MY is large, *and M-In color distinct from free In color.

*Auxiliary complexing agent may be used.

2. Back Titration

*Known excess std EDTA added.

*Excess EDTA then titrated with a std sol'n of a second metal ion.

*Note: Std metal ion for back titration must not displace analyte from MY complex.

38

2. Back Titration: When to apply it

*Analyte precipitates in the absence of EDTA. *Analyte reacts too slowly with EDTA. *Analyte blocks indicator

3. Displacement Titration

*Metal ions with no satisfactory indicator.

*Analyte treated with excess Mg(EDTA)

 $M + MgY \rightarrow MY + Mg$

* K_{f} ' for MY > K_{f} ' for MgY

4. Indirect Titration

*Anions analyzed: CO_3^{2-} , CrO_4^{2-} , S^{2-} , and SO_4^{2-} . Precipitate SO_4^{2-} with <u>excess</u> Ba²⁺ at pH 1. *BaSO₄(s) washed & boiled with <u>excess</u> EDTA at pH 10. BaSO₄(s) + EDTA(aq) \rightarrow BaY²⁻(aq) + SO₄²⁻(aq) Excess EDTA back titrated:EDTA(aq) + Mg²⁺ \rightarrow MgY²⁻(aq) <u>Alternatively:</u> *Precipitate SO₄²⁻ with <u>excess</u> Ba²⁺ at pH 1.

*Filter & wash precipitate.

*Treat excess metal ion in filtrate with EDTA.

40

5. Masking *Masking Agent: Protects some component of analyte from reacting with EDTA.

*F⁻ masks Hg²⁺, Fe³⁺, Ti⁴⁺, and Be²⁺.

*CN⁻ masks Cd²⁺, Zn²⁺, Hg²⁺, Co²⁺, Cu⁺, Ag⁺, Ni²⁺, Pd²⁺, Pt²⁺, Hg²⁺, Fe²⁺, and Fe³⁺,

but not Mg²⁺, Ca²⁺, Mn²⁺, Pb²⁺.

*Triethanolamine: Al³⁺, Fe³⁺, and Mn²⁺.

*2,3-dimercapto-1-propanol: Bi^{3+} , Cd^{2+} , Cu^{2+} , Hg^{2+} , and Pb^{2+} .

41

Chapter 17 Summary

- Stepwise formation of complexes
- Complexation equilibria
- Calculate alpha values for complexes
- Types of complexometric titrations.
- Species in EDTA solutions
- Structure of EDTA complexes
- Determine conditional formation constants
- Apply EDTA titrations, titration curves, water hardness
- Indicators for EDTA titrations
- · Use masking agents for EDTA titrations

43

Important Equations		WALL TOWN OF A
Overall constant		
$M + nL \rightleftharpoons ML_n$ $\beta_n = \frac{[ML_n]}{[M][L]}$	$_{\overline{u}} = K_1 K_2 \cdots K_n$	
Alpha values		
$\alpha_{\mathrm{M}} = \frac{[\mathrm{M}]}{c_{\mathrm{M}}} = \frac{[\mathrm{M}] + \beta_{1}[\mathrm{M}][\mathrm{L}] + \beta_{2}[\mathrm{M}][\mathrm{L}] + \beta_{3}[\mathrm{M}][\mathrm{M}][\mathrm{L}] + \beta_{3}[\mathrm{M}][\mathrm{M}][\mathrm{L}] + \beta_{3}[\mathrm{M}][\mathrm{M}][\mathrm{M}][\mathrm{L}] + \beta_{3}[\mathrm{M}][\mathrm{M}][\mathrm{M}][\mathrm{M}][\mathrm{M}] + \beta_{3}[\mathrm{M}][\mathrm{M}][\mathrm{M}][\mathrm{M}][\mathrm{M}] + \beta_{3}[\mathrm{M}][\mathrm{M}][\mathrm{M}][\mathrm{M}][\mathrm{M}] + \beta_{3}[\mathrm{M}][\mathrm{M}][\mathrm{M}][\mathrm{M}] + \beta_{3}[\mathrm{M}][\mathrm{M}][\mathrm{M}][\mathrm{M}][\mathrm{M}] + \beta_{3}[\mathrm{M}][\mathrm{M}][\mathrm{M}][\mathrm{M}]] + \beta_{3}[\mathrm{M}][\mathrm{M}][\mathrm{M}][\mathrm{M}][\mathrm{M}][\mathrm{M}][\mathrm{M}] + \beta_{3}[\mathrm{M}][\mathrm{M}][\mathrm{M}][\mathrm{M}][\mathrm{M}]] + \beta_{3}[\mathrm{M}][\mathrm{M}][\mathrm{M}][\mathrm{M}][\mathrm{M}] + \beta_{3}[\mathrm{M}][\mathrm{M}][\mathrm{M}][\mathrm{M}][\mathrm{M}]] + \beta_{3}[\mathrm{M}][\mathrm{M}][\mathrm{M}][\mathrm{M}][\mathrm{M}][\mathrm{M}][\mathrm{M}][\mathrm{M}][\mathrm{M}]] + \beta_{3}[\mathrm{M}][\mathrm{M}][\mathrm{M}][\mathrm{M}][\mathrm{M}][\mathrm{M}][\mathrm{M}]] + \beta_{3}[\mathrm{M}][\mathrm{M}][\mathrm{M}][\mathrm{M}][\mathrm{M}][\mathrm{M}][\mathrm{M}]] + \beta_{3}[\mathrm{M}][\mathrm{M}][\mathrm{M}][\mathrm{M}][\mathrm{M}][\mathrm{M}][\mathrm{M}]] + \beta_{3}[\mathrm{M}][\mathrm{M}][\mathrm{M}][\mathrm{M}][\mathrm{M}][\mathrm{M}]] + \beta_{3}[\mathrm{M}][\mathrm{M}][\mathrm{M}][\mathrm{M}][\mathrm{M}][\mathrm{M}][\mathrm{M}]] + \beta_{3}[\mathrm{M}][\mathrm{M}][\mathrm{M}][\mathrm{M}][\mathrm{M}][\mathrm{M}]] + \beta_{3}[\mathrm{M}][\mathrm{M}][\mathrm{M}][\mathrm{M}][\mathrm{M}]] + \beta_{3}[\mathrm{M}][\mathrm{M}][\mathrm{M}][\mathrm{M}]] + \beta_{3}[\mathrm{M}][\mathrm{M}][\mathrm{M}][\mathrm{M}][\mathrm{M}]] + \beta_{3}[\mathrm{M}][\mathrm{M}][\mathrm{M}][\mathrm{M}][\mathrm{M}]] + \beta_{3}[\mathrm{M}][\mathrm{M}][\mathrm{M}][\mathrm{M}][\mathrm{M}]] + \beta_{3}[\mathrm{M}][\mathrm{M}][\mathrm{M}][\mathrm{M}]] + \beta_{3}[\mathrm{M}][\mathrm{M}][\mathrm{M}][\mathrm{M}][\mathrm{M}]] + \beta_{3}[\mathrm{M}][\mathrm{M}][\mathrm{M}][\mathrm{M}][\mathrm{M}]] + \beta_{3}[\mathrm{M}][\mathrm{M}][\mathrm{M}][\mathrm{M}][\mathrm{M}]] + \beta_{3}[\mathrm{M}][\mathrm{M}][\mathrm{M}][\mathrm{M}][\mathrm{M}]] + \beta_{3}[\mathrm{M}[\mathrm{M}][\mathrm{M}][\mathrm{M}][\mathrm{M}][\mathrm{M}]] + \beta_{3}[\mathrm{M}[\mathrm{M}][\mathrm{M}][\mathrm{M}][\mathrm{M}][\mathrm{M}]] + \beta_{3}[\mathrm{M}[\mathrm{M}][\mathrm{M}][\mathrm{M}][\mathrm{M}][\mathrm{M}]] + \beta_{3}[\mathrm{M}[\mathrm{M}][\mathrm{M}][\mathrm{M}][\mathrm{M}]] + \beta_{3}[\mathrm{M}[\mathrm{M}][\mathrm{M}][\mathrm{M}][\mathrm{M}][\mathrm{M}]] + \beta_{3}[\mathrm{M}[\mathrm{M}][\mathrm{M}][\mathrm{M}][\mathrm{M}][\mathrm{M}]] + \beta_{3}[\mathrm{M}[\mathrm{M}][\mathrm{M}][\mathrm{M}][\mathrm{M}]] + \beta_{3}[\mathrm{M}[\mathrm{M}][\mathrm{M}][\mathrm{M}][\mathrm{M}]] + \beta_{3}[\mathrm{M}[\mathrm{M}][\mathrm{M}][\mathrm{M}][\mathrm{M}]] + \beta_{3}[\mathrm{M}[\mathrm{M}][\mathrm{M}][\mathrm{M}][\mathrm{M}]] + \beta_{3}[\mathrm{M}[\mathrm{M}][\mathrm{M}][\mathrm{M}][\mathrm{M}]] + \beta_{3}[\mathrm{M}[\mathrm{M}][\mathrm{M}[\mathrm{M}][\mathrm{M}]] + \beta_{3}[\mathrm{M}[\mathrm{M}][\mathrm{M}][\mathrm{M}][\mathrm{M}]] + \beta$	$\frac{[M]}{\beta_2[M][L]^2 + \cdots + \beta_n[M][L]^n} = \frac{1}{1 + \beta_1[L] + \beta_2[L]^2}$	$\frac{1}{+\beta_3[L]^3 + \cdots + \beta_s[L]^n}$
$\alpha_{ML} = \frac{[ML]}{2} = \frac{1}{1000}$	$\frac{\beta_{l}[M][L]}{1 - \alpha_{l}[M][L]} = \frac{\beta_{l}[M][L]}{1 - \alpha_{l}[M][L]}$	β ₁ [L]
$\delta_{M} [M] + \beta_{I}[M]$	$L_{j} + \beta_{2} M_{j} L_{j} + \cdots + \beta_{n} M_{n} L_{j} - 1 + \beta_{1} L_{j} + \beta_{n} L_{n}$	$\beta_{\underline{n}}[\underline{L}]^{-} + \beta_{\underline{n}}[\underline{L}]^{-} + \cdots + \beta_{\underline{n}}[\underline{L}]^{-}$
$K'_{MY} = \alpha_4 K_{MY} = \frac{[MY^{(n-4)+}]}{[M^{n+1}]c_T}$	$K''_{ZaY} = \alpha_4 \alpha_{\rm M} K_{ZaY} = \frac{[ZnY^{2-}]}{c_{\rm M}c_{\rm T}}$	