Chapter 14

Principles of Neutralization Titrations

1

Standard Solutions

- The standard reagents used in acid/base titrations are ALWAYS strong acids or bases: HCl, HClO₄, H₂SO₄, NaOH and KOH.
- Standard acids are prepared by diluting of concentrated acids.
- HNO₃ is not used as a standard acid.
- Weak acids and bases are NEVER used as standard reagents—they react incompletely with analytes.

2

Acid-Base Indicators

HIn(aq) $H^+(aq)+In^-(aq)$ (acid color) (base color) (base color)

$$K_a = \frac{\lfloor H^+ \rfloor \lfloor In^- \rfloor}{\lfloor HIn \rfloor} \Longrightarrow \frac{K_a}{\lfloor H^+ \rfloor} = \frac{\lfloor In^- \rfloor}{\lfloor HIn \rfloor}$$

Add a few drops of the phenolphthalein indicator to a acidic solution (pH = 1):

 $\frac{K_a}{[H^+]} = \frac{1 \times 10^{-8}}{1 \times 10^{-1}} = \frac{[In^-]}{[HIn]} = \frac{1}{10,000,000}$

The ratio shows that the predominant form of the indicator is HIn, resulting in an acid color solution.

HIn(aq) \longrightarrow H⁺(aq)+In⁻(aq) (acid color) (base color)

As OH⁻ is added to this solution, [H⁺] decreases and the equilibrium shift to right, changing HIn to In⁻. A color change from colorless or slightly red to reddish purple will occur.

For most indicators, **about 1/10 of the initial form must be converted to the other form** before a new color is apparent.

5

Indicator pH Range: $pK_a \pm 1$

$$pH = pK_a + \log\left(\frac{[In^-]}{[HIn]}\right)$$

For a acid solution

$$pH = pK_a + \log\left(\frac{1}{10}\right) = pK_a - 1$$

For a basic solution

$$pH = pK_a + \log\left(\frac{10}{1}\right) = pK_a + 1$$

TABLE 14-1 Some Important Acid/Base Indicators Common Name Transition Range, pH Color Change[†] Indicator Type‡ pKa* 1.2 - 2.8Thymol blue 1.658 R-Y 8.0-9.6 8.96§ Y–B Methyl yellow 2.9-4.0 R-Y 2 Methyl orange 3.1-4.4 3.46§ R–O 2 3.8 - 5.4Y-B Bromocresol green 4.668 1 Methyl red 4.2-6.3 5.00§ R-Y 2 Bromocresol purple 5.2-6.8 6.12§ Y–P Bromothymol blue 6.2-7.6 7.10§ Y-B Phenol red 6.8-8.4 7.81§ Y-R Cresol purple 7.6-9.2 Y-P Phenolphthalein 8.3-10.0 C-R Thymolphthalein 9.3-10.5 C–B Alizarin yellow GG 10-12 C-Y 2

*At ionic strength of 0.1.

The blue; C = colorless; O = orange; P = purple; R = red; Y = yellow. (1) Acid type: HIn + 420 \rightleftharpoons H₃O⁺ + In⁻; (2) Base type: In + H₂O \rightleftharpoons InH⁺ + OH⁻. §For the reaction InH⁺ + H₂O \rightleftharpoons H₃O⁺ + In.

© 2004 Thomson - Brooks/Cole

8

Titration Errors with Acid-Base Indicators

• Systematic (determinate) Errors: Difference between the color change of indicator and the equivalence point.

--blank titration correction

• Personal (Indeterminate) Errors: Uncertainty of color change (± 0.5 to ± 1 pH; best ± 0.1 pH), Insensitivity of eyes to color change. Colorless \rightarrow Red/Red \rightarrow colorless? --use reference color solution

Titrations and pH Curves

- The equivalence point is defined by stoichiometry, not by the pH.
- The pH value at equivalence point is affected by the acid strength or base strength.
- The strength of a weak acid or weak base have significantly effect on the shape of pH curves.

10

Determine the Equivalence Point of an Acid-Base Titration

- Use a pH meter to monitor the pH and then plot a titration curve.
- Use an acid-base indicator, which marks the endpoint of a titration by changing color.

11

Titration of Strong Acids and Strong Bases

- HCl + NaOH \Leftrightarrow NaCl + H₂O HCl \rightarrow H⁺ + Cl⁻
 - NaOH → Na⁺ + OH⁻

 $H_2O \Leftrightarrow H^+ + OH^-$

- In HCI: [H⁺] = *c*_{HCI} + [OH⁻] ≈ *c*_{HCI}
- In NaOH: [OH⁻] = c_{NaOH} + [H⁺] $\approx c_{\text{NaOH}}$
- Equivalent point: pH = 7

Titrating a Strong Acid with a Strong Base

- Ex. 14-1 Generate the hypothetical titration curve for the titration of 50 mL of 0.0500 M HCl with 0.1000 M NaOH.
- How many mL of 0.1000 M NaOH are needed to complete the reaction? (to reach the equivalent point?

 $(C_1V_1)_{HCI} = (C_2V_2)_{NaOH}$ V₂ = (0.0500x50)/0.1000 = 25 mL, pH = 7.0

13

Calculating pH During a SA-SB Titration
Initial pH: For a strong acid, which is completely dissociated, pH = -log [H₃O⁺].

- **pH before the equivalence point:** Subtract the number of moles of H₃O⁺ reacted from the concentration originally present; divide by the total volume to obtain [H₃O⁺]; determine pH.
- **pH at the equivalence point:** The solution contains only Na⁺, Cl⁻, and H₂O, and is therefore neutral, so $[H_3O^+] = 1.0 \times 10^{-7}$; pH = 7.00.
- **pH after the equivalence point:** Subtract the number of moles of H₃O⁺ reacted from the total number of moles of OH⁻ added to obtain the number of moles of OH⁻ in excess; divide by the total volume to obtain [OH⁻]; determine pOH and pH.

Initial Point	
Before any base is	added, the solution is 0.0500 M in H_3O^+ , and
1	$pH = -\log[H_3O^+] = -\log 0.0500 = 1.30$
After Addition of The hydronium ion the base and dilution	¹ 10.00 mL of Reagent n concentration is decreased as a result of both reaction with on. So the analytical concentration of HCl is
	no. mmol HCl remaining after addition of NaOH
$c_{\rm HCl} =$	total volume soln
	original no. mmol HCl - no. mmol NaOH added
=	total volume soln
	$(50.00 \text{ mL} \times 0.0500 \text{ M}) - (10.00 \text{ mL} \times 0.1000 \text{ M})$
	50.00 mL + 10.00 mL
	$(2.500 \text{ mmol} - 1.000 \text{ mmol}) = 2.500 \times 10^{-2} \text{ M}$
-	60.00 mL
	$[H_3O^+] = 2.500 \times 10^{-2} M$
and	$pH = -\log[H_3O^+] = -\log(2.500 \times 10^{-2}) = 1.60$

At the equival- centrations of equality into the	ence point, neither HCl nor NaOH is in excess, and so the con hydronium and hydroxide ions must be equal. Substituting thi the ion-product constant for water yields
[H	$[0^+] = \sqrt{K_{\rm w}} = \sqrt{1.00 \times 10^{-14}} = 1.00 \times 10^{-7} \mathrm{M}$
	$pH = -\log(1.00 \times 10^{-7}) = 7.00$
After Addition	n of 25.10 mL of Reagent ow contains an excess of NaOH, and we can write
After Addition	n of 25.10 mL of Reagent ow contains an excess of NaOH, and we can write no. mmol NaOH added – original no. mmol HCI
After Addition The solution no C _{NaOH}	n of 25.10 mL of Reagent w contains an excess of NaOH, and we can write $= \frac{\text{no. mmol NaOH added - original no. mmol HCI}}{\text{total volume soln}}$ $= 1000000000000000000000000000000000000$
After Addition The solution n C _{NaOH}	$= \frac{\text{no. mmol NaOH added} - \text{original no. mmol HCl}}{\frac{\text{total volume soln}}{25.10 \times 0.100 - 50.00 \times 0.0500}} = 1.33 \times 10^{-4} \text{ M}$
After Addition The solution n c_{NaOH} and the equilib	$= \frac{\text{no. mmol NaOH added - original no. mmol HCl}}{\frac{\text{no. mmol NaOH added - original no. mmol HCl}}{\frac{\text{total volume soln}}{1}} = \frac{25.10 \times 0.100 - 50.00 \times 0.0500}{75.10} = 1.33 \times 10^{-4} \text{ M}}$ rium concentration of hydroxide ion is
After Addition The solution n C_{NaOH} and the equilib	$= \frac{\text{no. mmol NaOH added - original no. mmol HCl}}{\text{total volume soln}}$ $= \frac{25.10 \times 0.100 - 50.00 \times 0.0500}{75.10} = 1.33 \times 10^{-4} \text{ M}$ rium concentration of hydroxide ion is
After Addition The solution n C_{NaOH} and the equilib	$r of 25.10 \text{ mL of Reagent}$ $= \frac{\text{no. mmol NaOH added - original no. mmol HCl}}{\text{total volume soln}}$ $= \frac{25.10 \times 0.100 - 50.00 \times 0.0500}{75.10} = 1.33 \times 10^{-4} \text{ M}$ $[OH^-] = c_{\text{NaOH}} = 1.33 \times 10^{-4} \text{ M}$

	pH = 14.00 - 3.88 = 10.12			
Changes in pH during the Titration of a Strong Acid with a Strong Base				
	рН			
Volume of NaOH, mL	50.00 mL of 0.0500 M HCl with 0.100 M NaOH	50.00 mL of 0.000500 M HC with 0.00100 M NaOH		
0.00	1.30	3.30		
10.00	1.60	3.60		
20.00	2.15	4.15		
24.00	2.87	4.87		
24.90	3.87	5.87		
25.00	7.00	7.00		
25.10	10.12	8.12		
26.00	11.12	9.12		
30.00	11.80	9.80		

17

What is the solution pH after addition of 40.00 and 50.00 mL of 0.1000 M NaOH into 50 mL of 0.05000 M HCI?

When 40.00 mL of NaOH added: [OH⁻] = (0.1000x40.00 - 0.05000x50)/(40 + 50) = 0.0166 M pOH = -log[OH⁻] = 1.78, pH = 14 - pOH = 12.22

When 50.00 mL of NaOH added: [OH⁻] = (0.1000x50.00 – 0.05000x50)/(50 + 50) = 0.025 M pOH = -log[OH⁻] = 1.60, pH = 14 – pOH = 12. 40

From charge-balance equation to simplified calculation $CBE: [H_{3}O^{+}] + [Na^{+}] = [OH^{-}] + [CI^{-}]$ (1) Before quivalence point, $[OH^{-}] \ll [CI^{-}]$, so $[H_{3}O^{+}] \approx [CI^{-}] - [Na^{+}]$ $[H_{3}O^{+}] = \frac{V_{HC}C_{HCI}}{V_{NaOH} + V_{HCI}} - \frac{V_{MaOH}C_{MaOH}}{V_{NaOH} + V_{HCI}} = \frac{V_{HCI}C_{HCI} - V_{MaOH}C_{MaOH}}{V_{MaOH} + V_{HCI}}$ (2) At the equivalence point, $[CI^{-}] = [Na^{+}], [H_{3}O^{+}] = [OH^{-}]$ $[H_{3}O^{+}] = \sqrt{K_{w}}$ (3) Beyond the equivalence point, $[H_{3}O^{+}] \ll [Na^{+}]$ $[OH^{-}] \approx [Na^{+}] - [CI^{-}]$ $[OH^{-}] = \frac{V_{NaOH}C_{MaOH}}{V_{NaOH} + V_{HCI}} - \frac{V_{HCI}C_{HCI}}{V_{NaOH} + V_{HCI}} = \frac{V_{MaOH}C_{NaOH} - V_{HCI}C_{HCI}}{V_{NaOH} + V_{HCI}}$

Titrations of Weak Acid with

Strong Bases In weak acid - strong base titrations (or weak base - strong acid) the pH before and at the equivalence point depends on the acid (base) concentrations and

 $K_a (K_b)$.

 $\Delta pH/\Delta vol$ at the equivalence points of weak acid (base) – strong base (acid) are smaller than for strong acid – strong base titrations.

added and will have reacted with the same number of moles of acid. ∴ moles acid remaining = {(M_a x V_o)/1000 - (M_b x V_t)/1000} in (V_o + V_t) mL. & moles of acetate produced = (M_b x V_t)/1000 also in (V_o + V_t) mL.

Thus the solution will contain both acetic acid and its conjugate base acetate, that is a buffer will have been created with $\{(M_a \; x \; V_o)/1000 - (M_b \; x \; V_l)/1000\} \text{ moles of acetic acid and}$

 $(M_b \times V_t)/1000$ moles of acetate both in $(V_o + V_t)$ mL of solution.

$$\begin{split} & \text{Moles CH}_3\text{COOH in } (V_o + V_l) \text{ mL} = \{(M_a \times V_o)/1000 - (M_b \times V_l)/1000\} \\ & \therefore \text{ [CH}_3\text{COOH]} = \{(M_a \times V_o)/1000 - (M_b \times V_l)/1000\}/(V_o + V_l) \times 1000 \\ & = \{(M_a \times V_o) - (M_b \times V_l)/(V_o + V_l) \text{ mol/L}, \text{ & similarly} \\ \text{ [CH}_3\text{COO]} = (M_b \times V_l)/(V_o + V_l) \text{ mol/L}. \end{split}$$

Chapter 14 Summary

- Using standard solutions
- Uses and properties of acid-base indicators
- Various types of acid-base titrations of strong and weak acids and bases
- The effect of reagent concentration on the shapes of titration curves
- Calculation and construction of titration curves
- Effect of equilibrium constants on the shapes of titration curves
- Using derivative plots to determine equivalence points

Indicator pH range: pK_a +/- 1

<mark>рК_w</mark> = pH + pOH