Chapter 12 Gravimetric Methods of Analysis [gravi – metric; weighing – measure] Image: metric metr

1

Features of Gravimetric Analysis

- A given analyte is isolated from the sample and weighed in some pure form.
- One of the most accurate and precise methods of macro quantitative analysis.
- One of the oldest methods known (before 1810).
- Absolute analysis (no standard needed).

4

Criteria for the precipitate in Gravimetric Analysis

- Very low solubility (very low K_{sp}).
- Forms a particulate or large crystal solid.
- Be sufficiently pure and in a form suitable for drying and weighing.
- Stoichiometrical reactions.
- Preferably knows its solubility product.

5

Commonly Employed Gravimetric Analysis

Analyte	Precipitate Formed	Product Weighed	Interferences
Fe	Fe(OH) ₃	Fe ₂ O ₃	Many, Al, Ti, Cr, etc.
Al	Al(OH) ₃	Al ₂ O ₃	Many, Al, Ti, Cr, etc.
Ca	CaC_2O_4	CaCO ₃ CaO	All metals except Alkalis and M
Mg	MgNH ₄ PO ₄	MgP ₂ O ₇	All metals except Alkalis.
Zn	ZnNH ₄ PO ₄	ZnP2O7	All metals except Mg.
Ba	BaCrO ₄	BaCrO ₄	Pb
SO42	BaSO ₄	BaSO ₄	NO ₃ ⁻ , PO ₄ ³⁻ , ClO ₃ ⁻
Cľ	AgCl	AgCl	Br', I', SCN', CN', S2', S2O32'
PO4 3.	MgNH ₄ PO ₄	MgP ₂ O ₇	MoO42, C2O42, K+

7

Properties of precipitates

Particle size is important

large particles are easier to filter

<u>Colloidal</u> suspensions = very small, does not settle $[10^{-7} - 10^{-4} \text{ cm diameter (i.e., nm-}\mu\text{m})]$

Fe(OH)₃ (gelatinous)

<u>Curdy</u>: AgCl \rightarrow heating to ppt.

<u>Crystalline</u> = larger, settles more easily (0.01-10 mm): BaSO₄

8

• Factors that determine the particle size of precipitates

- ✓ ppt solubility (K_{sp})
- ✓ Temperature
- ✓ Reactant concentrations
- ✓ Rate at which reactants are mixed

□ How particles are formed (Mechanism)?

- 1. Supersaturated solution formed
- 2. <u>Nucleation</u>: formation of a solid particle with a minimum number of atoms or molecules
- 3. <u>Particle growth</u>: enlargement of existing particle with new atoms or molecules
- More nucleation yields large number of small particles
- More growth yields small number of large particles

10

Experimental Control of Particle Size

*RS \downarrow , Q \downarrow , S \uparrow \rightarrow particle size \uparrow

- 1. Dilute sample solution and dilute reagents $(Q\downarrow)$
- 2. Slow addition of precipitating agent with good stirring $(Q\downarrow)$
- 3. In hot solution (S \uparrow)
- 4. pH control
- * Precipitates with very low solubilities, such as many sulfides and hydrous oxides, generally form colloids.

13

16

$$\begin{split} & \frac{\text{Ex. 12-2. An iron ore was analyzed by dissolving a 1.1324-g sample in c-HCl.}{\text{The resulting solution was diluted with water, and the iron(III) was} \\ & \text{precipitated as the hydrous oxide Fe₂O₃ · xH₂O by the addition of NH₃. After filtration and washing, the residue was ignited at a high temp. to give 0.5394 g of pure Fe₂O₃ (159.69 g/mol). Calculate (a) the % Fe (55.847 g/mol) and (b) the % Fe₃O₄ (231.54 g/mol) in the sample. amount Fe₂O₃ = <math>\frac{0.5394 \text{ g}}{159.69 \text{ g/mol}} = 3.3778 \text{ mmol}$$
(a) mass Fe = $3.3778 \times 10^3 \text{ mol} \times 2 \times 55.847 \text{ g/mol} = 0.37728 \text{ g}}{1.1324 \text{ g}} \times 100\% = 33.317 \approx 33.32 \%$ (b) $3 \text{ Fe}_2O_3 \rightarrow 2 \text{ Fe}_3O_4 + \frac{1}{2} O_2 \text{ mass Fe}_3O_4 = 3.3778 \text{ mmol} \times \frac{3}{2} \times 231.54 \text{ g/mol} = 0.52140 \text{ g}}{0.52140 \text{ g}} \times 100\% = 46.044 \approx 46.04 \%$

Chapter 12 Summary

- Precipitation gravimetry Precipitate particle size

- Colloidal suspensions
 Crystalline precipitates
 Relative Supersaturation (RSS)
 Applications of gravimetry

$$RS = \frac{Q-S}{S} \qquad (Q \ge S)$$

Particle size $\propto \frac{1}{RS}$