# Chapter 11

### Solving Equilibrium Problems for Complex Systems

1

# Equilibrium Calculations

▲ Previous

 $BaC_2O_4(s) \Leftrightarrow Ba^{2+} + C_2O_4^{-2-}$ 

 $[\mathrm{Ba}^{2+}] = [\mathrm{C}_2 \mathrm{O_4}^{2-}]$ 

 $\begin{array}{c} \stackrel{\scriptstyle \wedge}{\xrightarrow{}} \underline{But} \hspace{0.1 cm} \text{what if oxalate then reacted with } H_2O \\ C_2O_4{}^{2-} + H_2O \Leftrightarrow HC_2O_4{}^- + OH{}^- \\ HC_2O_4{}^- + H_2O \Leftrightarrow H_2C_2O_4 + OH{}^- \end{array}$ 

$$\label{eq:because} \begin{split} & [Ba^{2+}] \neq [C_2O_4^{2-}] \\ & \text{because} \ [C_2O_4^{2-}]_T = [C_2O_4^{2-}] + [HC_2O_4^{-}] + [H_2C_2O_4] \end{split}$$





## **Charge Balance Equations**

▲ Charge Balance Equations -

- An algebraic statement of electroneutrality.
- $\checkmark$  The concentration of the sum of the positive charges = the
- concentration of the sum of the negative charges.
- ▲ General Form of the Equation

$$n_1[C_1] + n_2[C_2] + \dots = m_1[A_1] + m_2[A_2] + \dots$$

 $n_1$  and  $m_1$  represent the magnitude of the charge of the ion  $[C_1]$  and  $[A_1]$  represent the concentration of each cation and anion respectively

4

## Charge Balance Examples

▲ Given

$$\begin{split} [\mathrm{H}^+] &= 5.1 \ \mathrm{x} \ 10^{-12} \ \mathrm{M} \qquad [\mathrm{K}^+] &= 0.0550 \ \mathrm{M} \\ [\mathrm{OH}^-] &= 0.0020 \ \mathrm{M} \qquad [\mathrm{H}_2\mathrm{PO}_4^{-1}] &= 1.3 \ \mathrm{x} \ 10^{-6} \ \mathrm{M} \\ [\mathrm{HPO}_4^{2-}] &= 0.0220 \ \mathrm{M} \qquad [\mathrm{PO}_4^{3-}] &= 0.0030 \ \mathrm{M} \end{split}$$

Find the solution for the Charge Balance equation.

 $[H^+] + [K^+] = [OH^-] + [H_2PO_4^-] + 2[HPO_4^{2-}] + 3[PO_4^{3-}]$ 

5

### Charge Balance Examples

▲ Write the charge balance equation for a solution containing H<sub>2</sub>O, H<sup>+</sup>, OH<sup>-</sup>, ClO<sub>4</sub><sup>-</sup>, Fe(CN)<sub>6</sub><sup>3-</sup>, CN<sup>-</sup>, Fe<sup>3+</sup>, Mg<sup>2+</sup>, CH<sub>3</sub>OH, HCN, NH<sub>3</sub>, and NH<sub>4</sub><sup>+</sup>.

 $[H^+] + 3[Fe^{3+}] + 2[Mg^{2+}] + [NH_4^+] =$  $[OH^-] + [CIO_4^-] + 3[Fe(CN_6^{3-}] + [CN^-]$ 

## Charge Balance Examples

▲ Write a charge balance equation for aqueous solution of glycine, which reacts as follows:

$$\label{eq:hardenergy} \begin{split} ^{+}\!\mathrm{H}_{3}\mathrm{NCH}_{2}\mathrm{CO}_{2}^{-} \Leftrightarrow \mathrm{H}_{2}\mathrm{NCH}_{2}\mathrm{CO}_{2}^{-} + \mathrm{H}^{+} \\ ^{+}\!\mathrm{H}_{3}\mathrm{NCH}_{2}\mathrm{CO}_{2}^{-} + \mathrm{H}_{2}\mathrm{O} \Leftrightarrow ^{+}\!\mathrm{H}_{3}\mathrm{NCH}_{2}\mathrm{CO}_{2}\mathrm{H} + \mathrm{OH}^{-} \end{split}$$

7

# Charge Balance Examples

▲ Write a charge balance equation for a solution of Al(OH)<sub>3</sub> dissolved in 1 M KOH. Possible species are Al<sup>3+</sup>, Al(OH)<sup>2+</sup>, Al(OH)<sub>3</sub>, Al(OH)<sub>2</sub><sup>+</sup>, and Al(OH)<sub>4</sub><sup>-</sup>

 $3[A1^{3+}]+2[A1OH^{2+}]+[A1(OH)_2^+]+[H^+]+[K^+] = [A1(OH)_4^-]+[OH^-]$ 

8

## Mass (Concentration) Balance Equation

Mass Balance (Material Balance) -

▲ Statement of Conservation of Matter -The quantity of all species in a solution containing a particular atom (or group of atoms) must be equal to the amount of that atom (or group of atoms) delivered to the solution.

#### Mass Balance Example

(known concentrations)

▲ Write the mass balance equation for the acetate group of atoms in a 0.05 M solution of acetic acid.

#### $[HAc] + [Ac^-] = 0.05 M$

▲ Write the mass balance equation for the phosphate group of atoms in a 0.025 M solution of phosphoric acid.

 $[H_3PO_4^{0}]+[H_2PO_4^{-}]+[HPO_4^{2-}]+[PO_4^{3-}] = 0.025 M$ 

10

# Mass Balance Example

(known concentrations)

▲ Write the mass balances expression for the system formed when a 0.010 M NH<sub>3</sub> solution is saturated with AgBr.

 $\begin{array}{l} AgBr \mathop{\longrightarrow}\limits_{\longleftrightarrow} Ag^{+} + Br^{-} \\ Ag^{+} + NH_{3} \rightleftharpoons Ag(NH_{3})^{+} \\ Ag(NH_{3})^{+} + NH_{3} \rightleftharpoons Ag(NH_{3})_{2}^{+} \\ NH_{3} + H_{2}O \rightleftharpoons NH_{4}^{+} + OH^{-} \\ 2H_{2}O \rightleftharpoons H_{3}O^{+} + OH^{-} \end{array}$ 

$$\begin{split} & [Ag^+] + [Ag(NH_3)^+] + [Ag(NH_3)_2^+] = [Br^-] \\ & [NH_3] + [Ag(NH_3)^+] + [Ag(NH_3)_2^+] + [NH_4^+] = c_{NH_3} = 0.010M \\ & [OH^-] = [NH_4^+] + [H_3O^+] \end{split}$$

11

Which of the following is the correct answer of the charge balance and mass balance for a system containing saturated  $CaF_2$  in a pH 4.00 buffer?

(A) 
$$[Ca^{2+}] = 2[F^{-}]$$

(**B**)  $2[Ca^{2+}] + [H_3O^+] = [OH^-] + [F^-]$ 

(C)  $[Ca^{2+}] = 2[F^{-}] + 2[HF]$ 

(**D**)  $2[Ca^{2+}] = [F^-] + [HF]$ 

#### Calculation of Solubility's by Systematic Method

#### EXAMPLE 11-5

Calculate the molar solubility of Mg(OH)<sub>2</sub> in water.

Solution

Step 1. Write Equations for the Pertinent Equilibria Two equilibria need to be considered:

 $Mg(OH)_{2}(s) \rightleftharpoons Mg^{2+} + 2OH^{-}$  $2H_{2}O \rightleftharpoons H_{3}O^{+} + OH^{-}$ 

Step 2. Define the Unknown Since 1 mol of  $Mg^{2+}$  is formed for each mole of  $Mg(OH)_2$  dissolved,

solubility  $Mg(OH)_2 = [Mg^{2+}]$ 

13

| Step 3. Write Al | Equilibrium-Constant Expressions                                            |              |
|------------------|-----------------------------------------------------------------------------|--------------|
|                  | $K_{\rm sp} = [{\rm Mg}^{2+}][{\rm OH}^{-}]^2 = 7.1 \times 10^{-12}$        | (11-5)       |
|                  | $K_{\rm w} = [{\rm H}_3{\rm O}^+][{\rm O}{\rm H}^-] = 1.00 \times 10^{-14}$ | (11-6)       |
| Step 4. Write M  | ass-Balance Expressions As shown by the two equil                           | ibrium equa- |

tions, there are two sources of hydroxide ions:  $Mg(OH)_2$  and  $H_2O$ . The hydroxide ion concentration resulting from dissociation of  $Mg(OH)_2$  is twice the magnesium ion concentration, and the hydroxide ion concentration from the dissociation of water is equal to the hydronium ion concentration. Thus,

 $[OH^{-}] = 2[Mg^{2+}] + [H_{3}O^{+}]$ (11-7)

Step 5. Write the Charge-Balance Expression

 $[OH^{-}] = 2[Mg^{2+}] + [H_{3}O^{+}]$  (11-8)

Note that this equation is identical to Equation 11-7. Often, a mass-balance equation for a system is identical to the charge-balance equation.

14

**Step 6.** Count the Number of Independent Equations and Unknowns We have developed three independent algebraic equations (Equations 11-5, 11-6, and 11-7) and have three unknowns ([Mg<sup>2+</sup>], [OH<sup>-</sup>], and [H<sub>3</sub>O<sup>+</sup>]). Therefore, the problem can be solved rigorously.

**Step 7a. Make Approximations** We can make approximations only in Equation 11-7. Since the solubility-product constant for  $Mg(OH)_2$  is relatively large, the solution will be somewhat basic. Therefore, it is reasonable to assume that  $[H_3O^+] \ll [OH^-]$ . Equation 11-7 then simplifies to

 $2[\mathrm{Mg}^{2+}]\approx [\mathrm{OH}^{-}]$ 

Step 8. Solve the Equations Substitution of Equation 11-8 into Equation 11-5 gives

$$\begin{split} [Mg^{2+}](2[Mg^{2+}])^2 &= 7.1 \times 10^{-12} \\ [Mg^{2+}]^3 &= \frac{7.1 \times 10^{-12}}{4} = 1.78 \times 10^{-12} \end{split}$$

 $[Mg^{2+}] = solubility = (1.78 \times 10^{-12})^{1/3} = 1.21 \times 10^{-4} \text{ or } 1.2 \times 10^{-4} \text{ M}$ 

Step 9. Check the Assumptions Substitution into Equation 11-8 yields

 $[OH^{-}] = 2 \times 1.21 \times 10^{-4} = 2.42 \times 10^{-4} M$ 

and, from Equation 11-6,

$$[H_{3}O^{+}] = \frac{1.00 \times 10^{-14}}{2.42 \times 10^{-4}} = 4.1 \times 10^{-11} M$$

Thus, our assumption that  $[{\rm H_3O^+}] \ll [{\rm OH^-}]$  is certainly valid.

#### 16

| EXAMPLE 11-6                                                         |
|----------------------------------------------------------------------|
| Calculate the solubility of Fe(OH) <sub>3</sub> in water.            |
| Solution                                                             |
| Proceeding by the systematic approach used in Example 11-5, we write |
| Step 1. Write the Equations for the Pertinent Equilibria             |
| $Fe(OH)_3(s) \rightleftharpoons Fe^{3+} + 3OH^-$                     |
| $2H_2O \rightleftharpoons H_3O^+ + OH^-$                             |
| Step 2. Define the Unknown                                           |
| solubility = $[Fe^{3+}]$                                             |
| Step 3. Write All the Equilibrium-Constant Expressions               |

 $K_{\rm sp} = [{\rm Fe}^{3+}][{\rm OH}^-]^3 = 2 \times 10^{-39}$  $K_{\rm w} = [{\rm H}_3{\rm O}^+][{\rm OH}^-] = 1.00 \times 10^{-14}$  te.

17

**Step 4 and 5. Write Mass-Balance and Charge-Balance Equations** As in Example 11-5, the mass-balance equation and the charge-balance equations are identical, that is,

 $[OH^{-}] = 3[Fe^{3+}] + [H_{3}O^{+}]$ 

Step 6. Count the Number of Independent Equations and Unknown We see that we have enough equations to calculate the three unknowns.

Step 7a. Make Approximations As in Example 11-5, assume that  $[\rm H_3O^+]$  is very small so that  $[\rm H_3O^+]\ll 3[Fe^{3+}]$  and

 $3[\text{Fe}^{3+}] \approx [\text{OH}^{-}]$ 

Step 8. Solve the Equations Substituting  $[OH^-] = 3[Fe^{3+}]$  into the solubility-product expression gives

$$[Fe^{3+}](3[Fe^{3+}])^3 = 2 \times 10^{-39}$$
$$[Fe^{3+}] = \left(\frac{2 \times 10^{-39}}{27}\right)^{1/4} = 9 \times 10^{-11}$$

Step 9. Check the Assumption From the assumption made in Step 7, we can calculate a provisional value of  $[OH^-]$ :

$$[OH^{-}] \approx 3[Fe^{3+}] = 3 \times 9 \times 10^{-11} = 3 \times 10^{-10} M$$

Using this value of  $[\mathrm{OH}^-]$  to compute a provisional value for  $[\mathrm{H_3O}^+],$  we have

$$[H_3O^+] = \frac{1.00 \times 10^{-14}}{3 \times 10^{-10}} = 3 \times 10^{-5} \,\mathrm{M}$$

But  $3\times10^{-5}$  is not much smaller than three times our provisional value of  $[Fe^{3+}]$ . This discrepancy means that our assumption was invalid and the provisional values for  $[Fe^{3+}]$ ,  $[OH^-]$ , and  $[H_3O^+]$  are all significantly in error. Therefore, go back to Step 7a and assume that

 $3[Fe^{3^+}] <\!\!< [H_3O^+]$ 

Now, the mass-balance expression becomes

 $[H_3O^+] = [OH^-]$ 

19

Substituting this equality into the expression for  $K_w$  gives

$$[H_3O^+] = [OH^-] = 1.00 \times 10^{-7} M$$

Substituting this number into the solubility-product expression developed in Step 3 gives

$$[Fe^{3^+}] = \frac{2 \times 10^{-39}}{(1.00 \times 10^{-7})^3} = 2 \times 10^{-18} \,\mathrm{M}$$

Since  $[H_3O^+] = [OH^-]$ , our assumption is that  $3[Fe^{3+}] \ll [H_3O^+]$  or  $3 \times 2 \times 10^{-18} \ll 10^{-7}$ . Thus, our assumption is valid, and we may write

solubility =  $2 \times 10^{-18}$  M

Note the very large error (-8 orders of magnitude!) introduced by the invalid assumption.

When  $K_{sp}$  is very small, the dissolution of hydroxide precipitate has insignificant effect on solution pH, i.e., pH = 7. Note: if  $x(3x)^3 = K_{sp}$  is used, x = 9.2e-11 M.

20

#### Class Practice:

Write the expressions needed to calculate the solubility of  $CaC_2O_4$  in water, and CB and MB equations.

 $CaC_{2}O_{4}(s) \rightleftharpoons Ca^{2+}+C_{2}O_{4}^{2-}$   $C_{2}O_{4}^{2-}+H_{2}O \rightleftharpoons HC_{2}O_{4}^{-}+OH^{-}$   $HC_{2}O_{4}^{-}+H_{2}O \rightleftharpoons H_{2}C_{2}O_{4}^{-}+OH^{-}$   $H_{2}O \rightleftharpoons H^{+}+OH^{-}$ 

The mass-balance equation is

 $[Ca^{2+}] = [C_2O_4^{2-}] + [HC_2O_4^{--}] + [H_2C_2O_4]$ 

The charge-balance equation is

 $2[Ca^{2+}] + [H_3O^+] = 2[C_2O_4^{2-}] + [HC_2O_4^{--}] + [OH^-]$ 



| 2 | 2 |
|---|---|
| 2 | Э |

| analytical concen                 | tration is equal to the equilibrium calcium ion concentrat                                                                                                      | tion, that is,          |
|-----------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|
|                                   | solubility = $[Ca^{2+}]$                                                                                                                                        | (11-12)                 |
| Step 3. Write Al                  | l the Equilibrium-Constant Expressions                                                                                                                          |                         |
|                                   | $[Ca^{2+}][C_2O_4^{-2-}] = K_{sp} = 1.7 \times 10^{-9}$                                                                                                         | (11-13)                 |
|                                   | $\frac{[\mathrm{H}_{3}\mathrm{O}^{+}][\mathrm{H}\mathrm{C}_{2}\mathrm{O}_{4}^{-}]}{[\mathrm{H}_{2}\mathrm{C}_{2}\mathrm{O}_{4}]} = K_{1} = 5.60 \times 10^{-2}$ | (11-14)                 |
|                                   | $\frac{[\mathrm{H}_{3}\mathrm{O}^{+}][\mathrm{C}_{2}\mathrm{O}_{4}^{2^{-}}]}{[\mathrm{H}\mathrm{C}_{2}\mathrm{O}_{4}^{-}]} = K_{2} = 5.42 \times 10^{-5}$       | (11-15)                 |
|                                   | $[H_3O^+][OH^-] = K_w = 1.0 \times 10^{-14}$                                                                                                                    |                         |
| Step 4. Mass-Be the three oxalate | alance Expressions Because CaC <sub>2</sub> O <sub>4</sub> is the only source of species.                                                                       | of Ca <sup>2+</sup> and |
| [Ca <sup>2+</sup> ]               | $= [C_2O_4^{2-}] + [HC_2O_4^{-}] + [H_2C_2O_4] = solubility$                                                                                                    | (11-16)                 |



Since the problem states that the pH is 4.00, we can also write that

 $[H_3O^+] = 1.00 \times 10^{-4} and [OH^-] = K_w/[H_3O^+] = 1.00 \times 10^{-10}$ 

**Step 5.** Write Charge-Balance Expression A buffer is required to maintain the pH at 4.00. The buffer most likely consists of some weak acid HA and its conjugate base,  $A^-$ . The nature of the three species and their concentrations have not been specified, however, so we do not have enough information to write a charge-balance equation.

**Step 6. Count the Number of Independent Equations and Unknowns** We have four unknowns ( $[Ca^{2+}]$ ,  $[C_2O_4^{2-}]$ ,  $[HC_2O_4^{-}]$ , and  $[H_2C_2O_4]$ ) as well as four independent algebraic relationships (Equations 11-13, 11-14, 11-15, and 11-16). Therefore, an exact solution can be obtained, and the problem becomes one of algebra.

**Step 7a. Make Approximations** It is relatively easy to solve the system of equations exactly in this case, so we will not bother with approximations.

25

**Step 8.** Solve the Equations A convenient way to solve the problem is to substitute Equations 11-14 and 11-15 into 11-16 in such a way as to develop a relationship between  $[Ca^{2+}]$ ,  $[C_2O_4^{2-}]$ , and  $[H_3O^+]$ . Thus, we rearrange Equation 11-15 to give

$$[HC_2O_4^{-}] = \frac{[H_3O^+][C_2O_4^{2-}]}{K_2}$$

Substituting numerical values for  $\rm [H_3O^+]$  and  $\rm \textit{K}_2$  gives

$$[HC_{2}O_{4}^{-}] = \frac{1.00 \times 10^{-4} [C_{2}O_{4}^{2-}]}{5.42 \times 10^{-5}} = 1.85 [C_{2}O_{4}^{2-}]$$

Substituting this relationship into Equation 11-14 and rearranging gives

$$[\mathrm{H}_{2}\mathrm{C}_{2}\mathrm{O}_{4}] = \frac{[\mathrm{H}_{3}\mathrm{O}^{+}][\mathrm{C}_{2}\mathrm{O}_{4}^{2^{-}}] \times 1.85}{K_{1}}$$

26

Substituting numerical values for 
$$[H_3O^+]$$
 and  $K_1$  yields  

$$[H_3C_2O_4] = \frac{1.85 \times 10^{-4}[C_2O_4^{2^-}]}{5.60 \times 10^{-2}} = 3.30 \times 10^{-3}[C_2O_4^{2^-}]$$
Substituting these expressions for  $[HC_2O_4^-]$  and  $[H_2C_2O_4]$  into Equation 11-16 give  

$$[Ca^{2^+}] = [C_2O_4^{2^-}] + 1.85[C_2O_4^{2^-}] + 3.30 \times 10^{-3}[C_2O_4^{2^-}]$$

$$= 2.85[C_2O_4^{2^-}]$$
or  $[C_2O_4^{2^-}] = [Ca^{2^+}]/2.85$ 
Substituting into Equation 11-13 gives  

$$\frac{[Ca^{2^+}][Ca^{2^+}]}{2.85} = 1.7 \times 10^{-9}$$

$$[Ca^{2^+}] = solubility = \sqrt{2.85 \times 1.7 \times 10^{-9}} = 7.0 \times 10^{-5} M$$



 $AgCl(s) \rightleftharpoons AgCl(aq)$   $AgCl(aq) \rightleftharpoons Ag^{+} + Cl^{-}$   $AgCl(s) + Cl^{-} \rightleftharpoons AgCl_{2}^{-}$   $AgCl_{2}^{-} + Cl^{-} \rightleftharpoons AgCl_{3}^{-2}$ 





#### Chapter 11 Summary

- Systematic method for complex equilibria
- Mass-balance and charge-balance expressions
- Steps for problems with several equilibria
- Making approximations to solve equilibrium problems
- Calculating solubilities under various conditions
- Separations by control of precipitating agent
   Important Equations

```
\label{eq:hassbalance for} \begin{split} &HA+H_2O\rightleftharpoons H_3O^++A^- \qquad \rho_{HA}=[HA]+[A^-]\\ &Charge balance\\ &no.\ moles/L\ positive\ charge=no.\ moles/L\ negative\ charge\\ &Mass balance\ for\ saturated\ H_2S\ solution\\ &[S^2^-]+[HS^-]+[H_2S]=0.1 \end{split}
```

