

IONIC STRENGTH

- A measure of total ion concentration in solution.
- A quantity required to calculate activity coefficients.
- Attempts to account for effects of both concentration and charge of ion on activity coefficients.

$$\mu = \frac{1}{2} \sum_{i=1}^{n} c_i Z_i^2$$

4

0
C
3c
6c
4c

Properties of Activity Coefficients

- As $\mu \rightarrow 0$, $\gamma_x \rightarrow 1$, $a_x \rightarrow [x]$, and $K' \rightarrow K$.
- In solutions that are not too concentrated, $\gamma_x = f(\mu)$.
- For a given $\mu,\,\gamma_x$ decreases as the ion charge increses.
- For neutral species, $\gamma_x \rightarrow 1$
- For a given $\mu,$ approximately same γ_{x} values for the same charge ions

Calculating Activity Coefficients

 The three factors (ionic strength, ionic charge, and ionic radius) are related by the Debye-Hückel equation (valid to ~ 0.1 M):

$$pg \gamma_x = \frac{-0.51 z_x^2 \sqrt{\mu}}{1 + (3.3 \alpha_x \sqrt{\mu})}$$
 at 25°C

where γ_x is the activity of an ion x with charge z and hydrated radius α (in nm) in a solution with ionic strength of μ .

• Table 10-2 in the text gives activity coefficients for many common ions at various ionic strengths.

13

Г

Activity Coefficients for lons at 25 °C							
	Activity Coefficient at Indicated Ionic Strength					_	
Ion	org, mm	0.001	0.005	0.01	0.05	0.1	
H ₃ O ⁺	0.9	0.967	0.934	0.913	0.85	0.83	
LI+, C ₆ H ₃ COO-	0.6	0.966	0.930	0.907	0.83	0.80	
Na*, 105, HSO5, HCO5, H2PO4, H2A3O4, OAc-	0.4-0.45	0.965	0.927	0.902	0.82	0.77	
OH-, F-, SCN-, HS-, CIO; , CIO; , BrO; , IO; , MnO;	0.35	0.965	0.926	0.900	0.81	0.76	
K ⁺ , CI ⁻ , Br ⁻ , I ⁻ , CN ⁻ , NO ₂ ⁻ , NO ₃ ⁻ , HCOO ⁻	0.3	0.965	0.925	0.899	0.81	0.75	
Rb*, Cs*, TI*, Ag*, NH;	0.25	0.965	0.925	0.897	0.80	0.75	
Mg ²⁺ , Be ²⁺	0.8	0.872	0.756	0.690	0.52	0.44	
Cu2+, Cu2+, Zn2+, Sn2+, Mn2+, Fe2+, Ni2+, Co2+, Phthalate2-	0.6	0.870	0.748	0.676	0.48	0.40	
Sr2+, Ba2+, Cd2+, Hg2+, S2-	0.5	0.869	0.743	0.668	0.46	0.38	
Ph ²⁺ , CO ²⁺ , SO ²⁺ , C ₂ O ²⁺	0.45	0.868	0.741	0.665	0.45	0.36	
Hg ²⁺ , SO ² ₂ , S ₂ O ² ₂ , Cr ²⁺ ₂ , HPO ²⁺ ₂	0.40	0.867	0.738	0.661	0.44	0.35	
Al ³⁺ , Fe ³⁺ , Cr ³⁺ , La ³⁺ , Ce ³⁺	0.9	0.737	0.540	0.443	0.24	0.18	
PO_4^{1-} , $Fe(CN)_4^{1-}$	0.4	0.726	0.505	0.394	0.16	0.095	
Th4+, Zr4+, Ce4+, Sn 4+	1.1	0.587	0.348	0.252	0.10	0.063	
Fe(CNg ⁺⁻	0.5	0.569	0.305	0.200	0.047	0.020	

Use Excel to calculate the activity coefficients of various ions

in different ionic strength solutions

_			
-			
_			
-			

Using Activity Coefficients

- We will normally not consider activity coefficients.
 - Usually, we are working at concentrations where γ is nearly 1.0
 - Usually, the difference that accounting for activity introduces is smaller than we can precisely measure.

19

Class Practice – Chapter 10

Calculate the molar solubility of Hg,Cl, in 0.10 M NaCl, taking into account the effect of ionic strength. Compare your answer to that in which you ignore the effect of ionic strength (K_{sp} = 1.2 e-18). [hint: Hg₂Cl₂ (s) = Hg₂²⁺ (aq) + 2Cl⁻ (aq)]

(6.1e-16 M vs 1.2 e-16 M, 5X difference)

20

Chapter 10 Summary

- · Activity of a species
- · Activity vs concentration
- · Activity coefficient and the influence of ionic charge
- Calculate ionic strength of solutions
- Salt/electrolyte effect
- Use activities in chemical equilibria

Important Equations

Ionic strength $\mu = \frac{1}{2} \sum_{i=1}^{n} c_i Z_i^2 = \frac{1}{2} ([A] Z_A^{2+} + [B] Z_B^{2+} + [C] Z_C^{2+} + ...)$ Activity $a_x = [X] \gamma_x$ For $X_m Y_n(s) \rightleftharpoons mX + nY$ $K_{sp} = a_x^m a_Y^n = \{ [X]^m [Y]^n \} \cdot (\gamma_X^m \gamma_Y^n) = K_{sp}^{'} \cdot (\gamma_X^m \gamma_Y^n)$