The University of Southern Mississippi Department of Chemistry and Biochemistry

CHE 311 (311L) Analytical Chemistry (Lab)

Instructor: Dr. Wujian Miao

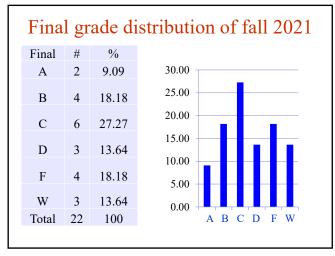
Lab Coordinator: Tina Masterson

1

Final ACS exam warranties:

If the student has missed no more than 3 lectures during the semester, has turned in all assignments and attended all regular exams, the following "warranties" will apply

Qs answered correctly out of 50	National %ile	Final grade no worse than
≥ 34	85	A
≥ 32	65	В
≥ 30	55	C
≥ 28	45	D

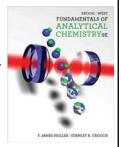

Spring 2022

Final	ACS Factored
D	D
C	В
В	В
D	D
A	A
A	A
F	F
C	В
D	D

2

Few Tips For Success in the Class

- actively attending every class and take good
- improving your math (good math is absolutely essential)
- completing all homework and study textbook
- Taking CHE 311L VERY Seriously
- asking questions



Q&A

5

Textbook for this course:

Fundamentals of Analytical Chemistry (9th Ed, 2014)

Skoog-West-Holler-Crouch

Chapter 1

Introduction of Analytical Chemistry

7

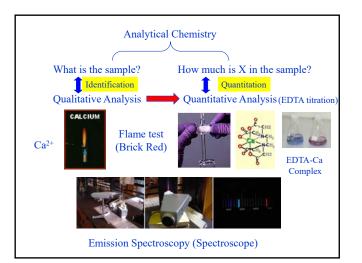
What is Analytical Chemistry?

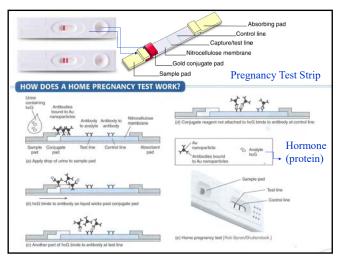
☐ "The study of methods for determining the composition of substances."

The sample could contain:

(1) Ca^{2+} , Na^+ , or K^+ ions

OR


(2) A urine sample from a potentially pregnant woman


Your job:

An unknown sample solution

To tell what is the sample or is the woman pregnant?

8

Analytical Chemistry

- ☐ "The study of methods for determining the composition of substances."
- ☐ "The science of extraction, identification, and quantitation of an unknown sample."

Two Areas:

- Qualitative Analysis (what?)
- Quantitative Analysis (how much?)

11

Chocolate (33% fat, 47% sugar,...) Bitter taste? NO bromine From Greek "Food of gods" Theobromine Diuretic, smooth muscle relaxant, cardiac stimulant, and vasodilator Central nervous system stimulant and diuretic Both in chocolate

13

- 1. Formulating the Question
- 2. Selecting Analytical Procedures/Methods

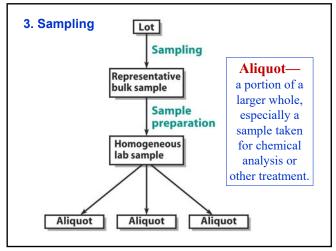
Defining the problem:

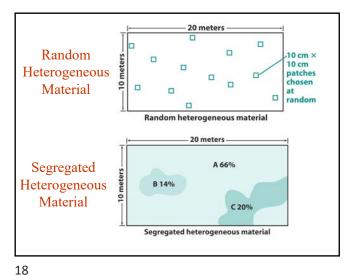
- 1. What accuracy and precision are required?
- 2. How much sample is available?
- 3. What is the concentration range of the analyte?
- 4. What components of the sample will cause interference?
- 5. What are the physical and chemical properties of the sample matrix?
- 6. How many samples are to be analyzed?

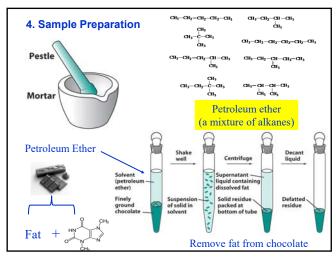
14

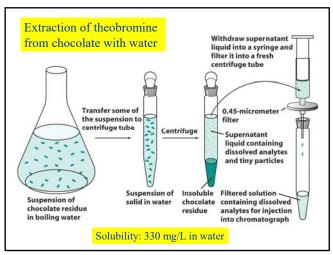
Numerical Criteria for Selecting Analytical Methods

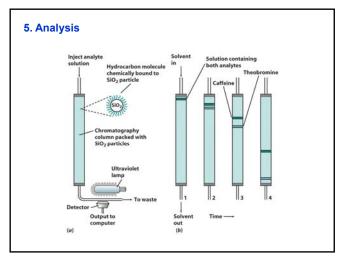
4. Sensitivity5. Detection Limit




7. Selectivity


Other Characteristics to Be Considered in Method of Choice


- 1. Speed (point of care diagnostic testing)
- 2. Ease and Convenience
- 3. Cost and availability of instrument
- 4. Per-sample cost


16

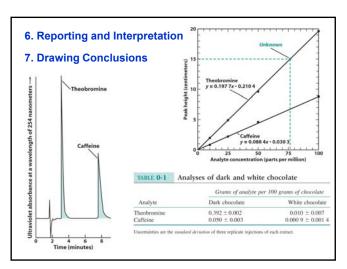


TABLE 4-1					
SI Base Units					
Physical Quantity	Name of Unit	Abbreviation			
Mass	kilogram	kg			
Length	meter	m			
Time	second	S			
Temperature	kelvin	K			
Amount of substance	mole	mol			
Electric current	ampere	A			
Luminous intensity	candela	cd			

or (micinalic	mai Syst	em of Units) Prefixes
Especially	useful in	this course
mega	M	10^{6}
kilo	k	10^{3}
centi	c	10-2
milli	m	10-3
micro	μ	10-6
nano	n	10-9
pico	p	10-12

Prefix	Abbreviation	Multiplier	
yotta-	Y	1024	
zetta-	Z	10^{21}	
exa-	E	1018	
peta-	P	1015	
tera-	T	1012	
giga-	G	109	
mega-	M	106	
kilo-	k	10^{3}	
hecto-	h	10^{2}	
deca-	da	101	
deci-	d	10-1	
centi-	c	10-2	
milli-	m	10^{-3}	
micro-	μ	10-6	
nano-	n	10-9	Modern Anal Tech
pico-	p	10-12	
femto-	f	10-15	LOD
atto-	a	10^{-18}	
zepto-	z	10-21	
yocto-	y	10^{-24}	

Solution Terminology

- solute
- solvent
- aqueous solution
- liter
- atomic weight
- molecular weight (Formula Weight)

26

Molarity Molarity Molarity (M): $c = \frac{\text{# moles A}}{\text{# liters solution}}$ or # millimoles A Molarity (M): $c = \frac{\text{# millimoles A}}{\text{# milliliters solution}}$

Useful Algebraic Relationships

mol A =
$$\frac{\text{wt A (g)}}{\text{fw A (g/mol)}}$$

mol A = V (L) x C (mol A/L soln)
or
mmol A = $\frac{\text{wt A (mg)}}{\text{fw A (g/mol)}}$
mmol A = V (mL) x C (mmol A/mL soln)

28

Percent Composition

$$w - w\% = \frac{\text{wt of a solute}}{\text{wt of solution}} \times 10^2 \%$$

$$v - v\% = \frac{\text{vol of a solute}}{\text{vol of solution}} \times 10^2 \%$$

$$v - v\% = \frac{\text{wt of a solute}}{\text{vol of solution}} \times 10^2 \%$$

$$v - v\% = \frac{\text{vol of solution}}{\text{vol of solution}} \times 10^2 \%$$

29

Parts per Million (ppm)

$$c_{ppm} = \frac{\text{wt of a solute}}{\text{wt of solution}} \times 10^6$$

Remember (<u>for aqueous solution</u>):

1 ppm = 1 μ g (solute)/mL (solution) = 1 mg/L Assuming: solution density = 1.0 g/mL (it is true for most of the diluted aqueous solutions)

Practice: What is the molar concentration of 585 ppm NaCl? (10.0 mM)

Parts per Billion (ppb)

$$c_{ppb} = \frac{\text{wt of a solute}}{\text{wt of solution}} \times 10^9$$

31

p-Functions

 $pX = -\log_{10}[X]$

[X]: Concentration or Activity

Activity: Effective concentration

examples:

pН

pOH

pC1

pAg

32

Chapter 1 Summary

- CHE 311 study tips
- The nature of analytical chemistry
- Quantitative and qualitative analysis
- Analytical chemistry and other branches of science
- Steps in a typical quantitative analysis
- SI units
- Solution terminology